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Supplementary Figure 1. Attentional cuing leads to conservative detection biases. To 
investigate the robustness of the results in Experiment 1, we replicated the experiment 
four additional times while changing different aspects of the design. As in Experiment 1, 
in all four experiments we titrated the contrast of the gratings so that subjects performed 
equally well in the cued and uncued trials (had the same d’, all p’s > 0.2). In all four 
additional experiments subjects were still more conservative in detecting the cued 
gratings (as indicated by a higher criterion c). The difference between the criterion for 
detecting cued and uncued gratings was significant (a) when we encouraged subjects to 
respond optimally by giving them additional monetary reward, as well as an explicit 
payoff structure that promoted unbiased responding (t(5) = 3.10,  p = 0.027), (b) when in 
addition to the monetary reward and the payoff structure, subject were given trial-by-trial 
feedback which is thought to diminish suboptimal perceptual biases (t(9) = 3.08,  p = 
0.013), (c) when the stimulus presentation was decreased to 50 ms to avoid eye 
movements (t(4) = 3.65,  p = 0.022), and (d) when eye movements were monitored to 
ensure that subjects were indeed fixating as instructed (t(5) = 3.45,  p = 0.018). This and 
the subsequent figures show means ± s.e.m. 
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Supplementary Figure 2. Results from a control experiment that involved eye tracking. 
(a) We plotted the average horizontal and vertical eye position during the stimulus 
presentation for each of the 960 trials for one representative subject who showed 
variability closest to the group average (i.e., not the “best” subject). The standard 
deviation of the fixation positions for this subject was 0.15 degrees for the horizontal 
dimension and 0.67 for the vertical dimension. The average standard deviations across 
the 6 subjects were 0.23 and 0.55 for the horizontal and vertical dimensions, respectively. 
We also found that subjects made eye-movements larger than 1 degree on only 1.2% of 
the trials (stimuli were located 5 degrees away from fixation). To ensure that eye-
movements did not contribute to our results on criterion, we correlated across subjects the 
propensity to make eye movements with the magnitude of the criterion difference 
between cued and uncued trials. It turned out that the correlation was not significant and 
it was, if anything, in the opposite direction such that less eye movement was associated 
with bigger criterion difference (r = –0.36, p = 0.49). Thus, eye movements could not 
account for the effects of attention on criterion. (b) We show the fixations for one trial 
from the subject from (a).  
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Supplementary Figure 3. The influence of the unprobed stimulus on criterion in 
Experiment 1. To investigate the putative role of the stimulus in the “unprobed” location 
(i.e., the stimulus that was not response-cued), we plotted hit and false alarm rates 
separately for the cases when the unprobed location contained a target or a non-target. 
The results showed that hit and false alarm rates were higher in the uncued condition 
regardless of the identity of the unprobed location. We also found an interaction between 
attentional cuing and the identity of the unprobed stimulus: when a noise patch was 
present in the unprobed location the difference between the cued and uncued location 
decreased in terms of both hit rate (F(1,8) = 10.81, p = 0.011) and false alarm rate (F(1,8) 
= 7.78, p = 0.024). Therefore, it appears that the identity of the unprobed location 
influenced subjects’ detection bias. Nevertheless, this influence could not account for the 
overall decrease of the criterion c with attention. 
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Supplementary Figure 4. Hit and false alarm rates in Experiment 2. We plotted the hit 
and false alarm rates for each contrast level for the cued and uncued trials separately. A 
multiple regression with factors of attention, contrast, and subject-specific effects 
demonstrated that contrast level modulated hit rates (p < 0.001) but not false alarm rates 
(p = 0.48). These effects are in agreement with our signal detection theoretic model (see 
Supplementary Fig. 5): the model postulates that subjects use the same unified criterion 
for detection in both the cued and uncued locations, and that the unified criterion is fixed 
with respect to the mean of the Target-Absent distribution. Thus, according to our model, 
false alarm rates should stay approximately constant across contrast levels for both cued 
and uncued stimuli (the uncued stimuli should have a higher false alarm rate because of 
the extra noise in the distributions). 
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Supplementary Figure 5. A depiction of the signal detection theoretic model that 
accounted for our findings. The model postulates that attention leads to smaller trial-by-
trial variability in the internal perceptual signal. Here we try to give an intuitive account 
of how the model is able to explain the results of the four experiments. (a) In Experiment 
1 we equated the detection sensitivity (d’) of the cued and uncued stimuli by presenting 
higher contrast stimuli in the uncued locations. We found that subjects produced higher 
hit and false alarm rates for the uncued stimuli (see Fig. 2). In our model the higher 
contrast of the uncued stimuli was represented by a bigger distance between the Target-
Absent (red; left) and Target-Present (blue; right) distributions. This larger difference 
between the cued and uncued trials was counterbalanced by the larger variability of the 
distributions for the uncued trials, so that d’ (signal-to-noise ratio) for cued and uncued 
trials was equated. Our model also assumes a single unified criterion used for both cued 
and uncued trials (previous studies have shown that subjects indeed tend to use a single 
unified criterion for detection of targets in two possible locations, compromising 
optimality for both1). As depicted in the figure, these assumptions lead to conservative 
detection for the cued stimuli and liberal detection for the uncued stimuli, which is what 
the experimental data showed. The optimal (unbiased) criteria for both conditions are 
depicted with dashed lines. (b) In Experiment 2, contrast was kept the same for cued and 
uncued stimuli (resulting in a higher d’ value for the cued stimuli). Subjects were more 
conservative in detecting the cued stimuli, with the effect being largest for low stimulus 
contrasts. In our model, unlike (a) where the distance between the peaks of the 
distributions was larger for uncued stimuli (because of the difference in contrast between 
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cued and uncued stimuli), in Experiment 2 one would expect this distance to be higher for 
cued stimuli because attention leads to boosting of the perceptual signal. Our results 
showed that subjects tended to avoid excessive false alarms by fixing their unified 
detection criterion with respect to the Target-Absent distribution to achieve a relatively 
constant level of false alarms2 (see also Supplementary Fig. 4). Because the Target-
Absent distribution for uncued trials is wider, this leads to more false alarms for uncued 
trials (see shaded regions). However, the hit rate depends on the contrast presented 
(Supplementary Fig. 4). Specifically, for low contrast levels the Target-Present 
distributions for both cued and uncued stimuli are relatively close to the Target-Absent 
distributions and the unified criterion falls to the left of the peak of the Target-Present 
distribution. In this case, due to the higher variability of the Target-Present distribution 
for uncued stimuli, hit rate would be higher for uncued stimuli. However, for higher 
contrast levels the Target-Present distribution’s peak would be to the right of the unified 
detection criterion which would lead to lower hit rate for uncued stimuli. In the figure the 
unified criterion falls on the left of the peak of the Target-Present distributions which 
leads to higher hit rate for cued stimuli (i.e., a condition similar to using high contrast). (c) 
In Experiment 3, we again equated the discrimination sensitivity d’ and observed higher 
visibility ratings for uncued stimuli. According to signal detection theory, a 
discrimination task can be represented with Gaussian distributions as in (a) and (b). In 
this case, the Target-Present and Target-Absent distributions would correspond to the 
distributions for right- and left-tilted patches. To give visibility (or confidence) ratings in 
a discrimination task, subjects can set additional “visibility” criteria next to the unified 
criterion for discrimination. High visibility ratings will be given for any trial that 
produces an internal response that falls to the right of the rightmost visibility criterion or 
to the left of the leftmost visibility criterion. If the relative lack of attention leads to larger 
variability of internal perceptual signal for the uncued stimuli, the wider spread means 
that more trials will exceed the visibility criteria for high visibility ratings. Since the two 
visibility criteria behave similarly, in the following discussion we focus on the rightmost 
visibility criterion. For that criterion, high confidence trials coming from the Target-
Present distribution correspond to hits in the detection task depicted above, while high 
confidence trials coming from the Target-Absent distribution correspond to false alarms 
in the detection task. Therefore, in the model the uncued stimuli would produce higher 
visibility ratings for the same reasons for which uncued stimuli receive more hit and false 
alarms in (a). (d) Finally, in Experiment 4 we used the same contrasts for the cued and 
uncued stimuli. As in Experiment 2, this resulted in a higher d’ value for the cued stimuli. 
Also, similarly to (b), in this experiment one would expect the distance between the two 
Gaussian distributions to be higher for cued stimuli because attention boosts the 
perceptual signal. Finally, according to our model, as in (b) subjects would give more 
high visibility ratings (graphically corresponding to hit and false alarms in the detection 
experiment in (b)) for the uncued stimuli when the contrast is low but not when the 
contrast is high, which is again what we found experimentally.
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Supplementary Figure 6. Model fits. We constructed a signal detection theoretic model 
in which attention increased the magnitude of the perceptual signal and decreased its 
trial-by-trial variability (see Supplementary Methods for details). We fit the model to 
the data for each observer and plotted the mean predicted value across observers for each 
of Experiments 1–4. The model was able to capture the pattern of the data in all 
experiments (see Fig. 2 for comparison). In (b) and (d) we marked the contrasts with the 
numbers 1 to 4 where 1 stands for the lowest presented contrast and 4 stands for the 
highest contrast. Based on the model fits across the four experiments, attention seemed to 
reduce the variability (standard deviation) of the cued distributions by a factor of ~2. We 
tested our intuition that the critical feature of the model was indeed this reduction in noise 
(see Supplementary Fig. 5). We investigated if models in which attention does not affect 
the variability of the signal were able to explain the data. The results showed that the 
model in which attention modulated both the mean and SD of the distributions 
(‘mean+SD’ model) outperformed models in which attention only modulated the mean of 
the distributions (‘mean-only’ model) or had no effect (‘null’ model). This was true even 
when we used model selection methods (Bayesian information criterion; BIC) to punish 
models for complexity. Thus our model provided good fits not just because it has more 
parameters. The averaged posterior probabilities (estimated from BIC) for the 
‘mean+SD’ model were 0.91, 0.77, 0.56, and 0.93 for Experiments 1–4, respectively. 
These values were higher than the values for the ‘mean-only’ (0.04, 0.06, 0.20, and 0.07) 
or the ‘null’ (0.05, 0.17, 0.24, and 0.00) models, providing strong evidence that the 
attentional modulation of the signal variability is indeed the critical feature of our model. 
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Supplementary Figure 7. Models in which attention does not affect the variability of the 
distributions cannot account for the observed data. As discussed in the legend of 
Supplementary Figure 6, the ‘mean-only’ model did not provide good model fits. Here 
we give an intuition as to why that model could not fit the observed data. We focus on the 
detection experiments, though similar argument could be given for the discrimination 
experiments (a) A depiction of the ‘mean-only’ model; the Target-Absent distribution is 
shown in red (left), while the Target-Present distribution is shown in blue (right). The 
‘mean-only’ model allowed for attention to increase the mean of the Target-Present 
distribution, without changing the mean of the Target-Absent distribution. The 
assumption that attention does not alter the mean of the Target-Absent distribution is 
based on the underlying neuronal physiology. Indeed, when a non-target is presented in 
the uncued condition, we expect the firing to be near baseline so that attention would not 
have much room to further decrease the firing. Given the above assumptions, the ‘mean-
only’ model predicts that cued and uncued trials will have similar levels of false alarms, 
and that cued trials should have a higher hit rate than uncued trials. However, 
Experiments 1 and 2 showed a very different pattern of results. Specifically, the false 
alarm rate was higher for uncued trials (see Supplementary Figs. 3 and 4). Hit rates 
were also higher for the uncued trials in both Experiment 1 and the first two contrast 
levels in Experiment 2, which is the opposite of what the ‘mean-only’ model would 
predict. (b) A depiction of an alternative version of the ‘mean-only’ model which can 
mathematically account for the observed results. This alternative model allows attention 
to move both the Target-Absent and Target-Present distributions in either direction. In 
order for this model to account for the findings, in Experiment 1 attention would need to 
shift the Target-Absent distribution 0.7 standard deviations to the left. (It is impossible to 
analyze the influence of attention on the Target-Present distribution because the contrast 
differed between the cued and uncued stimuli.) In Experiment 2, attention would need to 
shift the Target-Absent distribution 0.6 standard deviations to the left. The Target-Present 
distribution would need to move 0.4 standard deviations to the left for the lowest two 
contrasts, and 0.03 and 0.4 to the right for the highest two contrasts, respectively. Thus, 
in order for the alternative ‘mean-only’ model to fit the data, the overall effect of 
attention would need to be to decrease the means of the Target-Absent and Target-
Present distributions. This effect would correspond to attention having a largely 
suppressive influence on neuronal firing. However, such an effect does not fit with the 
well documented findings that attention boosts the firing rate. Even for the highest 
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contrast in Experiment 2, the boost in neuronal firing for the Target-Present distribution 
would be smaller than the suppression for the Target-Absent distribution. Further, this 
kind of alternative ‘mean-only’ model would not be able to account for our results from 
the discrimination studies, since a move of both the distributions to the left (or to the right) 
would result in a bias for choosing either left- or right-tilted gratings and such a bias was 
not observed in the data. Therefore, because of its neural implausibility and lack of 
generalizability to all our data, we did not implement this alternative ‘mean-only’ model 
computationally.
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Supplementary Figure 8. Distributed attention leads to disproportionately high visibility 
ratings. (a)We presented different number of stimuli on the screen in order to manipulate 
how subjects distribute their attention to different objects. In one condition we used 2 
items on the screen (a relatively focused mode of attention), and in the other we used 4 
items on the screen (a relatively distributed mode of attention). The stimuli were 
presented for 33 ms. After a delay of 500 ms, subjects saw a response cue that instructed 
them on which stimulus they should do the task. Subjects had to indicate the tilt (left/right) 
of a Gabor patch and rate the visibility (high/low) of the tilt of that patch. Subjects 
completed 8 blocks of 125 trials each for a total of 1000 trials. Within each block there 
were always either 2 or 4 patches. We computed d’ and stimulus visibility for each of the 
5 levels of contrast that we used in this experiment. (b) Both d’ and visibility ratings 
increased with higher contrast. Further, d’ was roughly similar for the 2-patch task with 
6% contrast, and the 4-patch task with 8% (p = 0.95), 10% (p = 0.7), and 12% (p = 0.99) 
contrast (see the horizontal dashed line). Nevertheless, compared to the 6%-contrast 2-
patch task, the visibility of the grating was judged to be higher for the 4-patch task for the 
8% contrast (p = 0.01), 10% contrast (p = 0.01), and 12% contrast (p = 0.02). Thus, 
similar to the matched-d’ discrimination experiment in the main text (Experiment 3), less 
attention (in the 4-patch task) led to higher subjective stimulus visibility ratings even 
though discrimination sensitivity (d’) was matched. Lower values of stimulus visibility 
indicate a less visible stimulus. 
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Supplementary Methods 
 
Participants 
Fifty-eight subjects in total (30 women; mean age = 23; range = 18–35 years) participated 
in eight psychophysical experiments (Experiments 1–4 and four additional experiments 
that served as control studies for Experiment 1; we call these experiments Control 
Experiments 1–4). Three subjects participated in two of the experiments, two participated 
in three of them, and one participated in four. All subjects were naive regarding the 
purposes of the experiments, had normal or corrected-to-normal vision, and signed an 
informed-consent statement approved by the local ethics committee 
 
Materials and Procedure  
In the detection experiments (Experiments 1 & 2), stimuli were presented on a gray 
background (6.0 cd/m2). Four circles (5° visual angle in diameter) were presented in the 
four quadrants of the screen with the center of each circle located 5° away from fixation. 
This configuration was chosen in order to minimize eye movements, as in previous 
studies3. A white (27 cd/m2) arrow pointed to one of the two diagonals. Subjects were 
seated in a dimmed room about 60 cm away from the computer monitor and instructed to 
maintain fixation at a central red dot (0.4°) displayed on top of the white arrow for the 
duration of each trial. Stimuli were generated using Psychophysics Toolbox4 in 
MATLAB (MathWorks, Natick, MA) and were shown on an iMac monitor (19 inch 
monitor size, 1680 x 1050 pixel resolution, 60 Hz refresh rate). 
 
The stimuli consisted of a noisy background composed of uniformly distributed intensity 
values (8% contrast). On top of the noise, we added gratings (0.5 cycles/degree) with 
probability of 50%. The appearance of the gratings was independent for the cued and 
uncued diagonals: thus gratings could appear in both diagonals, in neither, or in just one 
diagonal. 
 
The trials in the main task of the experiment began with 500 ms of a centrally presented 
pre-cue in the form of an arrow. This pre-cue indicated the likely location of target 
appearance. After 500 ms, four circles were presented for 367 ms (Fig. 1; except for 
Control Experiment 3 where the stimuli were presented for 50 ms). The pre-cued 
diagonal alternated in blocks of 40 trials. This “blocking” of spatial attention reduced the 
cognitive demands on the subjects and made it less likely that they could confuse the 
identity of the cued diagonal. Subjects were asked to indicate whether a grating was 
present in the diagonal that was highlighted with a response cue. The response-cued 
diagonal was the same as the pre-cued diagonal on 70% of the trials. Subjects were 
informed about this fact, which encouraged them to use more attentional resources for the 
processing of the stimuli in the cued compared to the uncued diagonal. 
 
In Experiment 1 and Control Experiments 1–4 (which served as controls to Experiment 1) 
the contrast of the stimuli was adjusted online to achieve equal d' for the cued and uncued 
trials. In Experiment 2, the contrast for each subject was fixed throughout the experiment. 
We used the QUEST staircase procedure5 to find the contrast level for each subject that 
would produce about 90% correct responses for the cued and uncued stimuli altogether 
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(mean contrast = 2.47%, SD = 0.9%). Each of the 4 runs in this experiment included 
gratings of fixed contrast – 50%, 67%, 83%, and 100% of the originally obtained contrast 
value, respectively. The order of the runs was randomized between participants. 
 
Control Experiments 1 and 2 included an explicit pay-off structure that encouraged 
unbiased responding. Subjects were given 1 point for each correct answer (hit or correct 
rejection) and 0 points for each incorrect answer (false alarm or miss). Control 
Experiment 2 further included trial-by-trial feedback. In order to further increase 
subjects’ motivation to perform the detection optimally, in each of the two experiments 
we awarded an extra $10 to the two subjects with the highest scores. In Control 
Experiment 3 the stimuli were presented for 50 ms to minimize the possibility of eye 
movements between the stimuli. Finally, in Control Experiment 4 we measures eye 
movements explicitly using an EyeLink 1000 (SR Research, Osgoode, ON, Canada) 
infrared camera recording at 1200 Hz. The eye-tracker had gaze resolution of 0.01° 
(noise limited) and gaze position accuracy of 0.5°. 
 
The discrimination experiments (Experiments 3 and 4) were similar to the detection 
experiments. The main difference was that subjects were asked to indicate whether the tilt 
of the gratings (which were always presented) was 45° or 135°, and then indicate the 
visibility of the tilt of the gratings. In Experiment 3 we used a 2-point scale (high/low), 
while in Experiment 4 we used a 4-point scale (1 – not visible at all; 4 – highly visible). 
We were careful in explaining to the subjects that they should rate the visibility of the tilt 
of the grating rather than the overall brightness of the stimulus. In Experiment 3 the 
contrast of the cued and uncued stimuli was updated online as in Experiments 1 and 
Control Experiments 1–4. In Experiment 4 we chose fixed levels of contrast but unlike 
Experiment 2, for simplicity the contrasts here were chosen to be the same for all 
participants (1.7, 2.2, 2.7, and 3.2% contrast) and were not separated in different runs. 
 
In each of Experiments 1–4 and Control Experiments 1–4, subjects completed 960 
experimental trials separated into 4 runs of 6 blocks. Feedback was given at the end of 
each block consisting of 40 trials, except for Control Experiment 2 where feedback was 
given after each trial. 
 
Our task was relatively demanding and our subjects were untrained in psychophysical 
tasks. Overall seven subject needed to be excluded because of inability to perform better 
than chance (0, 0, 3, and 1 subject was excluded subjects from Experiments 1–4, 
respectively; 0, 2, 1, 0 subjects were excluded from Control Experiments 1–4, 
respectively). 
 
Statistics 
We used standard statistical techniques such as analysis of variance (ANOVA) and t tests. 
For the psychophysical experiments we computed the signal detection measures d' and 
criterion c by calculating the hit rate (HR) and false alarm rate (FAR). Then d' = z(HR)–
z(FAR) and c = –0.5*(z(HR)+z(FAR)), where z is the inverse of the normal distribution 
function2.  
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Computational Modeling Assumptions 
We modeled the behavioral results from Experiments 1–4 with a computational model 
based on signal detection theory (SDT). We made several standard assumptions: (1) the 
two stimuli used in the experiment gave rise to internal signals normally distributed along 
some decision axis; (2) perceptual decisions were made by comparing the signal on some 
decision axis to a criterion; (3) confidence judgments were made by comparing the signal 
on some decision axis to multiple criteria, corresponding to the multiple confidence 
ratings available to subjects in this experiment; and (4) criteria for perceptual decisions 
and confidence ratings were set in the same way for cued and uncued stimuli. The last 
assumption derives from previous research1 which has demonstrated that subjects tend to 
use a single set of criteria for different sets of stimuli even if they are clearly labeled and 
spatially separated.  
 
Model specifications 
In our SDT model attention modulated both the signal and the noise of the internal 
representations. Thus, in this model attention changed both the distance (µ) between the 
Gaussian distributions and the standard deviation (σ) of the distributions (hence, we refer 
to this model as ‘mean+SD’). The standard deviation for the uncued stimuli (σuncued) was 
always set to 1. When the model was applied to Experiment 1, it included four free 
parameters: σcued, µuncued, a parameter that quantified the increase of µuncued with attention, 
and the location of the detection criterion. When applied to Experiment 2, it included 
seven free parameters: σcued, µuncued_contrast for each of the four levels of contrast (4 
parameters), a parameter that quantified the increase of each µuncued with attention, and 
the location of the detection criterion. Applied to Experiment 3, the model contained six 
free parameters: σcued, µuncued, a parameter that quantified the increase of µuncued with 
attention, and the criteria levels used for discrimination and visibility judgments (3 
parameters). Finally, when applied to Experiment 4, the model contained thirteen free 
parameters: σcued, µuncued_contrast for each of the four levels of contrast (4 parameters), a 
parameter that quantified the increase of each µuncued with attention, and the location of 
the criteria levels used for discrimination and visibility judgments (7 parameters 
corresponding to the 8 possible answers; the 8 answers are produced by combining the 2 
stimulus choices and 4 visibility levels). 
 
To test if our model only produced good fits because of the number of free parameters, 
we compared it to two simpler SDT models. In the first one, attention was allowed to 
affect only the distance (µ) between the Gaussian distributions (‘mean-only’ model), 
while in the second attention was not allowed to modulate anything (‘null’ model). In all 
four applications, the ‘mean-only’ model had one fewer parameter than the ‘mean+SD’ 
model, which allowed both the mean and SD of the distributions to be modulated by 
attention: it lacked the σcued parameter. The ‘null’ model had two fewer parameters than 
the ‘mean+SD’ model: it lacked both the σcued and the parameter that quantified the 
increase of µuncued. All other parameters were identical across the 3 models. The point of 
this comparison was to show that the extra parameters in the ‘mean+SD’ were necessary 
and worth the extra complexity.  
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Following standard SDT methods, we assumed that the 2-dimensional stimulus image 
was reduced to a single scalar value representing the likelihood that this stimulus was a 
target or a non-target. We did not explicitly model this information reduction. Our SDT 
model operated at the level of overall probabilities of giving each possible response 
following the presentation of each kind of stimulus and did not address the trial-by-trial 
pattern of responses. 
 
Model fitting 
We fit the models to the data using a maximum likelihood estimation approach that has 
previously been used within a signal detection framework6. Briefly, the likelihood of a set 
of signal detection model parameters given the observed data can be calculated using the 
multinomial model. Formally, 

 
where each Respi is a behavioral response a subject may produce on a given trial, and 
each Stimj is a type of stimulus that may be shown on that trial.  
 
The expression “ndata (Respi | Stimj)” is a count of how many times a subject actually 
produced Respi after being shown Stimj. 
 
The expression “Probθ (Respi | Stimj)” denotes the probability with which the subject 
produces the response Respi after being presented with Stimj, according to the signal 
detection model specified with parameters θ. According to SDT, in an experiment with 
two possible stimuli and n levels of confidence subjects have 2*n possible responses and 
therefore set 2*n-1 decision criteria that allow them to determine how to categorize each 
new trial. We denote these monotonically increasing criteria as c 1, c 2, … c 2*n-1. In 
addition let c 0 = – , and c 2*n = . The ordering of the set of response types “Resp” 
follows the ordering of response types defined by setting the monotonically increasing set 
of criteria c 1, … c 2*n-1 on a decision axis. For instance, in Experiments 1 and 2, Resp1 = 
“target absent” and Resp2 = “target present”; and in Experiment 3, Resp1 = “high 
visibility, left tilt”, Resp2 = “low visibility, left tilt”, Resp3 = “low visibility, right tilt”, 
Resp4 = “high visibility, right tilt.” Then, if we assume that Stimj gives rise to a Gaussian 
distribution with a mean µj and standard deviation σj, the expression Probθ (Respi | Stimj) 
evaluates to: 

  
Note that the models were not fit to summary statistics of performance such as percent 
correct or average visibility. Rather, models were fit to the full distribution of 
probabilities of each response type contingent on each stimulus type. Various kinds of 
summary statistics (e.g. d’, c, percent correct, average visibility ratings, and so on) can be 
derived from this full behavioral profile of stimulus-contingent response probabilities.  
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We fit all models under consideration to the observed data by finding the maximum-
likelihood parameter values θ. Maximum likelihood fits were found using a simulated 
annealing procedure7. Model fitting was conducted separately for each subject’s data. 
The estimation procedure was reliable; subsequent repetitions of the model fitting 
procedure produced negligible variations in the parameter estimates for each model of 
each subject’s data. 
 
Formal model comparison 
The maximum likelihood associated with each model characterizes how well that model 
captures patterns in the empirical data. However, comparing models directly in terms of 
likelihood can be misleading; greater model complexity can allow for tighter fits to the 
data but can also lead to undesirable levels of overfitting, i.e., the erroneous modeling of 
random variation in the data. Therefore, we compared the models using the Bayesian 
Information Criterion (BIC). This measure provides a means for comparing models on 
the basis of their maximum likelihood fits to the data while correcting for model 
complexity8.  
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