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Perceptual confidence neglects decision-
incongruent evidence in the brain
Megan A. K. Peters1* † , Thomas Thesen2, 3, 4 †, Yoshiaki D. Ko5 †, Brian Maniscalco6, Chad Carlson2,7,  
Matt Davidson5, Werner Doyle2, Ruben Kuzniecky2, Orrin Devinsky2, Eric Halgren3 and Hakwan Lau1, 8

Our perceptual experiences are accompanied by a subjective 
sense of certainty. These confidence judgements typically 
correlate meaningfully with the probability that the relevant 
decision is correct1–6, bolstering prevailing opinion that both 
perceptual decisions and confidence optimally reflect the 
probability of having made a correct decision6–13. However, 
recent behavioural reports suggest that confidence compu-
tations overemphasize information supporting a decision, 
while selectively down-weighting evidence for other pos-
sible choices14–19. This view remains controversial, and sup-
porting neurobiological evidence has been lacking. Here we 
use intracranial electrophysiological recordings in humans 
together with machine-learning techniques to demonstrate 
that perceptual decisions and confidence rely on spatiotem-
porally separable neural representations in a face/house 
discrimination task. We then use normative computational 
models to show that confidence relies excessively on evidence 
supporting a decision (for example, face evidence for a ‘face’ 
decision), even while decisions themselves reflect the opti-
mal balance of all evidence (for example, both face and house 
evidence). Thus, confidence may not reflect a readout of the 
probability of being correct; instead, observers may sacrifice 
optimality in favour of self-consistency20 in the face of limited 
neural and computational resources. Although seemingly sub-
optimal, this strategy may reflect the inference problem that 
perceptual systems are evolutionarily optimized to solve.

We recorded cortical electrophysiological signals (ECoG) from 
epilepsy patients with surgically implanted intracranial electrodes 
as they distinguished degraded faces from houses at two contrast 
levels and provided binary confidence judgements by pressing but-
tons on a keyboard (Fig. 1a). Subjects performed at an intermediate 
level of accuracy in their perceptual decisions (81.0% correct), as 
expected from performance thresholding procedures, which pro-
vided the opportunity to analyse and compare correct and incorrect 
decisions at different levels of subjective confidence.

Subjects rated confidence meaningfully, tracking their own  
decision accuracy rather than just stimulus contrast (Fig.  1b), 
and had faster reaction times for high-confidence versus low-
confidence responses (mean reaction time μ high-confidence =  1,059 ms, 
μlow-confidence =  1,439 ms, Student’s t(5) =  4.32, P =  0.007) but not for 
high-contrast versus low-contrast trials (μhigh-contrast =  1,096 ms,  
μlow-contrast =  1,132 ms, t(5)  =  1.96, P =  0.11). Subjects also showed 
little response bias to respond ‘face’ versus ‘house’ (Fig. 1b).

Following previous work that has shown that activity in the high-
gamma frequency range (80–120 Hz) reflects the most relevant neu-
ronal activity21–27 specifically regarding perceptual processes28–32, 
we focused further analyses on this frequency range. The mean 
time-frequency spectrum averaged over all subjects, electrodes and 
trials was indeed most salient in this high-gamma range, centred 
around 250–400 ms after stimulus onset (Supplementary Fig. 1), 
congruent with previous reports33–36. Because we confirmed that 
including a much wider range of frequency bands did not alter the 
qualitative pattern of the main results (and only very slightly altered 
them quantitatively; see Supplementary Results: Frequencies out-
side 80–120 Hz), this focus also helps to keep the computational 
demands for decoding analysis manageable and to avoid overfitting.

We used machine-learning classification (support vector 
machine; SVM) to decode two behavioural factors: perceptual 
‘decision’ (face/house) and ‘confidence’ (high/low). ‘Features’ for 
SVM decoding were defined as each electrode’s normalized power 
at a particular frequency band and particular timepoint in the 
peri-stimulus window (Supplementary Methods: Support vector 
machine decoding).

We were able to decode both behavioural factors above chance 
at different time bins after stimulus onset (Fig.  2a). Chance level 
was defined with permutation tests (see Supplementary Methods: 
Support vector machine decoding), and was found to be 0.5001, 
justifying our use of 0.5 as chance level decodability. ‘Decision’ 
decoding reached above-chance levels for at least half of subjects 
beginning at 250 ms, but ‘confidence’ decodability did not reach sig-
nificance for half of subjects until 450 ms (Supplementary Table 3). 
Importantly, both factors were able to be decoded above chance well 
before any movement onset (mean reaction time =  1,136 ms), sug-
gesting that decoding is not based on movement (finger movement 
preparation can typically be decoded only up to ~200 ms before 
movement onset with ECoG37; see also Supplementary Results: 
Motor preparation and neuroanatomical localization results).

The above results suggest that ‘decision’ and ‘confidence’ behav-
iours may reflect different evidence at different time points. One 
could argue that this dissociation may be trivial, as it is generally 
accepted that metacognitive representations arise later than those 
underlying perceptual decisions38,39 and may decay over time40. 
Although, in our experiment, subjects made both the decision and 
confidence responses simultaneously by a single button press, one 
could argue that in their minds they might have done it sequentially 
because it would be natural to do so.
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Therefore, we also directly assessed the spatial separation of the 
representations’ neural correlates41–45. We quantified each electrode’s 
contribution to decodability by calculating a normalized contribu-
tion index (C) (Supplementary Methods: equations (S1) and (S2)), 
which we projected onto its MNI coordinates averaged across coarse  
200-ms time bins to reveal broad patterns (see Supplementary 
Methods: Neuroanatomical localization of representations) (Fig. 2b).  
We also averaged C across electrodes within the four neocortical 
lobes—frontal (36.0% of all electrodes), parietal (24.2%), temporal 
(33.8%) and occipital (6.0%)—and plotted C for each lobe as a func-
tion of time after stimulus onset (Fig. 2c) (see also Supplementary 
Figs 6–8, and Supplementary Tables 4 and 5).

Occipital regions showed localized contributions to decision 
starting at 200–400 ms despite their sparsity in electrode numbers, 
but confidence appears to be more neuroanatomically distributed 
(significant main effects of lobe for decision (F(3,870)  =  7.748, 
P <  0.001) but not confidence (F(3,870) =  1.896, P =  0.129); 
Supplementary Results: Representational overlap) with marked 
contributions from parietal6 and frontal areas2,46–49 (Fig. 2b,c). Note 
that the separability of decision and confidence representations does 
not mean that there is no overlap at all. In terms of simple response 
level (rather than decodability), there are individual electrodes that 
showed some sensitivity to both decisions and confidence judge-
ments, although they did so in ways also congruent with our cen-
tral hypotheses (Supplementary Results: Representational overlap; 
Supplementary Fig. 9). Overall, this analysis of separable contri-
butions to decision and confidence confirms that our measure of 
decoding contribution by lobe is not due to trivial overrepresenta-
tion of electrodes: if a lobe’s decoding contribution were statistically 
biased because of electrode density, then denser regions (frontal and 
temporal) should have shown the highest decoding contributions 
and occipital the lowest. This analysis also provides additional evi-
dence that decision and confidence decoding was unlikely to be due 
to trivial decoding of movement: if estimators decoded movement 
preparation only, one should not expect strong and early contribu-
tions of occipital electrodes.

The dissociations in spatial representation correlates and decod-
ability timecourse for decisions and confidence suggest that confi-
dence computations may not rely on the same internal evidence as 
decisions. One possible hypothesis14–19 is that decisions are based on 
the ‘balance of evidence’ between decision-congruent and decision-
incongruent evidence on each trial, but confidence relies on deci-
sion-congruent evidence only14–19. For example, if subjects indicate 
a ‘face’ decision, their confidence judgement will reflect the strength 
of the neural evidence for ‘face’ but will be largely insensitive to the 

(lack of) evidence for ‘house’. Although this hypothesis has received 
some support from behavioural studies14–19, it remains controver-
sial, with some researchers arguing that confidence judgements 
reflect an optimal readout of the same information that led to the 
decision1–13. Moreover, whereas previous studies concerned whether 
subjects may ignore decision-incongruent evidence provided by the 
physical stimuli, here we addressed the intriguing possibility that 
such evidence may be available in the brain at the time of the confi-
dence computation, and yet the relevant neural mechanisms fail to 
make use of such information.

To evaluate this hypothesis, we trained an additional neural 
decoder on the stimulus presented on each trial and extracted 
the ‘weights’ assigned to each feature (electrode–frequency–time-
point; Supplementary Methods: Support vector machine decoding).  
We combined these weights with each feature’s power to define 
‘evidence’—that is, how much the neural code reflected both the 
‘face-ness’ and ‘house-ness’ of the stimulus on each trial (Methods: 
Choice probability analysis, equations  (1) and (2))—and catego-
rized evidence depending on the subject’s decisions: face evidence is 
decision-congruent on trials in which subjects responded ‘face’ but 
decision-incongruent when they responded ‘house’, and vice versa 
for house evidence.

We then computed the choice probability (CP)50 for ‘balance-
of-evidence’ versus ‘decision-congruent-only’ rules: on a trial-by-
trial basis for each subject, we assigned decisions and confidence 
judgements as hits and false alarms according to standard receiver-
operating-characteristic (ROC) methods51, and calculated the area 
under the curve (AUC) to obtain CP values. The degree to which 
CP  >   0.5 therefore indicates how well a given rule (balance-of- 
evidence or decision-congruent-only) can be used to correctly  
predict the relevant behaviour (decision or confidence), based on 
the neural evidence (Methods: Choice probability analysis).

CP was significantly above chance for both decision and con-
fidence (Supplementary Table 6) for both computation rules, but 
statistical tests also revealed an interaction between decision/con-
fidence and computation rule (2 (predictor: decision, confidence) 
×  2 (evidence: balance, decision-congruent) repeated-measures 
ANOVA: no main effect for predictor (F(1,5) =  4.538, P =  0.086), 
main effect for evidence (F(1,5) =   9.665, P =   0.027), and signifi-
cant interaction between predictor and evidence (F(1,5)  =   6.961, 
P =  0.046)) (Fig. 3a,b). This interaction occurred because, as hypoth-
esized, subjects used balance-of-evidence to compute decision, but 
balance-of-evidence and decision-congruent-only CPs were indis-
tinguishable when computing confidence (paired two-tailed t-tests; 
decision: t(5)  =   17.7044, P  <   0.001; confidence: t(5)  =   0.6719, 
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Figure 1 | Behavioural task and results. a, Subjects discriminated noisy stimuli as faces/houses and indicated their confidence (high versus low) with 
a single button press; responses were all made with one hand. b, As expected, subjects showed higher accuracy for high-contrast versus low-contrast 
stimuli, and for high-confidence versus low-confidence responses (2 (contrast: high/low) ×  2 (confidence: high/low) repeated measures ANOVA: 
F(1,5)confidence =  8.418, P =  0.034; F(1,5)contrast =  1.783, P =  0.239; F(1,5)confidence×contrast =  0.502, P =  0.10), but showed negligible bias to respond ‘face’ more often 
than ‘house’ (t(5) =  0.316, P =  0.765). Error bars represent the standard error of the mean across subjects.
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P =  0.531) (Fig. 3a,b). This means that taking into account decision-
incongruent evidence does not help to better predict confidence rat-
ing behaviour even though it had exactly this effect for decisions, as 
if subjects relied nearly exclusively on decision-congruent evidence 
alone when judging confidence even though they incorporated 
decision-incongruent evidence to calculate their decisions.

The CP analyses provide support for the hypothesis that confi-
dence computations disproportionately ignore decision-incongru-
ent evidence, in agreement with the finding that electrodes’ simple 
response level also reflects confidence in a decision-congruent 
manner (Supplementary Fig. 9). However, one could argue that the 
lack of improvement in predicting confidence via including deci-
sion-incongruent evidence is essentially a null result. In principle, 
the significant interaction between computation rule and decision/
confidence addresses this concern, but perhaps confidence is sup-
ported by a more complex process than decision, and therefore it 
is more difficult to achieve high CP given the noisiness of data; we 
might have reached the noise ceiling for confidence, which would 
lead to the false appearance of a lack of improvement when deci-
sion-incongruent evidence was also included.

To address this concern, we used the simple framework of signal 
detection theory (SDT)51,52 to build a normative forward model, and 

to formally assess the noise ceiling stipulated by the decodability 
of the data. Assuming that subjects are Bayesian ideal observers, 
their confidence should be monotonically related to accuracy4: that 
is, it should optimally reflect the probability of a decision’s being 
correct on a trial-by-trial basis7–12 (Fig. 4a; see Methods: SDT for-
ward model). Therefore, both trial-by-trial accuracy and confidence 
should depend on similar calculations; they can both be thought of 
as the distance of some internal decision variable x from a decision 
criterion (Fig.  4a). With this simple model, we can thus formally 
relate the decodability of the decision response, accuracy and confi-
dence, and compare the observed data to the model.

The fact that we cannot decode decision at 100% accuracy means 
there must be noise inherent in the data, the measurement and 
decoding technique, and so on. We empirically assessed this noise 
level, αdecoding, for each subject based on decision decodability, which 
would be 100% if αdecoding =  0 according to SDT (Fig. 4a). Based on 
the observed level of decoding noise (αdecoding), we estimated the 
theoretically maximal expected decodability for both accuracy and 
confidence (Fig.  4b; see Methods: SDT forward model). We then 
compared this expected maximum to actual data (that is, decod-
ability of accuracy and confidence by the forward model, based on 
all available features).

0.8

Decision 0.2

0

–0.2
0 200

Frontal Parietal Temporal Occipital

400 600 800 1,000

0 200 400 600
Time (ms)

800 1,000

Confidence C d
ec

is
io

n

0.2

0

–0.2

C c
on

fid
en

ce

0.7

0.6A
U

C

0.5

0.4
–200 0

0–200 ms

Anterior Posterior Contribution index:

–1 10

D
ec

is
io

n
V

en
tr

al
D

or
sa

l
C

on
fid

en
ce

200–400 ms 400–600 ms 600–800 ms 800–1,000 ms

Proportion significant

200 400
Time (ms)

600 800

100%

0%

1,000

a c

b
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Indeed, statistical tests confirmed that accuracy decodability 
achieved by the model was indistinguishable from the theoreti-
cal maximum given noise (αdecoding), but confidence decodability 
was significantly worse than the theoretical maximum (Fig. 4c,d). 
This finding indicates that the computation of confidence must 
differ in efficiency from the computation of the decision8,11, and 
therefore cannot optimally reflect the probability of being correct 
(accuracy)8–12. Crucially, that there was no problem in predict-
ing accuracy optimally given the observed noise level means the 
decision-incongruent evidence was available in the brain, and yet 
under-used in the computation of confidence.

One may worry that the detection theoretical model failed 
because of the different timecourses of information flow for deci-
sion (Type 1) and confidence (Type 2) judgements38,39. We addressed 
this concern by conducting temporal generalization analysis53, 
which evaluates whether the decision estimator trained at time t can 
decode confidence at some other time tʹ (especially after t). However, 
we saw no evidence for temporal dissociations that could have led 
to the model’s failure (see Supplementary Results: Lag in predicting 
from decision to confidence?; Supplementary Fig. 11). This analysis 
demonstrates the informativeness of neural signals in evaluating the 
SDT model; without neural information, it would have been diffi-
cult to ensure that the model’s failure was not due to differences in 
processing timecourse between decision and confidence.

Finally, one might argue that although the decoding noise ceil-
ing was reached, the CP analysis still failed to demonstrate that the 
decision-congruent-only rule can predict confidence better than the 
balance-of-evidence rule. To address this concern formally, we capi-
talized on Bayesian generative model simulations to compare directly 
how well a balance-of-evidence ideal observer54 and decision- 
congruent-only heuristic observer16 could predict subjects’ confidence 
(Supplementary Methods: Generative Bayesian models). We fed the 
trial-by-trial evidence (equations  (1) and (2)) as two-dimensional 
data points x =  [evidenceface, evidencehouse] to two Bayesian observ-
ers, one implementing the balance-of-evidence rule and one imple-
menting the decision-congruent-only rule for confidence. We then 
computed the percentage of cases in which the decision-congruent- 
only produced higher CP for confidence than the balance-of- 
evidence rule for each subjects, which gives the exceedance probabil-
ity of the decision-congruent-only rule (the likelihood that it pre-
dicted subjects’ behaviour better than the balance-of-evidence rule).

This direct model comparison revealed that the decision- 
congruent-only rule is not just equivalent but superior in predicting  

confidence, with exceedance probability of 72.8% (chance is 50%). 
This result demonstrates that confidence is in fact better predicted 
by decision-congruent evidence alone than by a balance-of-evidence 
rule (see also Supplementary Results: Generative Bayesian models).

Our results demonstrate not only that neural representations 
(correlates) and computations underlying decisions and confidence 
are dissociable, but also that confidence selectively reflects the mag-
nitude of decision-congruent evidence. This interpretation helps 
to explain previous findings in the literature regarding dissocia-
tions between accuracy and confidence, including cases in which 
changes in accuracy are not accompanied by appropriate changes 
in confidence55, cases in which inactivation of cortical or subcor-
tical structures affects confidence but not accuracy56,57, and cases 
in which confidence disproportionately tracks decision-congruent 
evidence magnitude even when this strategy reduces metacognitive 
sensitivity16. Our findings are also in keeping with previous studies 
showing that when noise is added to a stimulus58 or observer’s inter-
nal representation7,59–61, confidence increases while accuracy stays 
constant or decreases. This occurs because increased fluctuation in 
neural evidence favouring both stimulus alternatives is symmetric 
around a decision criterion (at zero; Fig. 4a), but can only increase 
the average magnitude of decision-congruent evidence (as it is by 
definition an absolute value; Fig. 4a). Thus, confidence rises even as 
accuracy remains unchanged or even decreases. Our results provide 
an account of how these dissociations between behavioural accu-
racy and confidence may arise from differences in computations at 
the neural level.

That decision-congruent evidence magnitude directly influ-
ences confidence has important implications for the possible neural 
substrates underlying probabilistic confidence computations12,62–67. 
Specifically, why would the system elect to compute confidence in 
this seemingly suboptimal way? The answer may have to do with 
the types of task that the perceptual system must solve in the real 
world. Most laboratory tasks present an artificial scenario in which 
an observer must decide between two known categories (for exam-
ple face/house, left/right): in the real world you would never know 
for sure that an object exists but not know what it is. In contrast, in 
an ecologically valid setting, the task is not to categorize a stimulus 
into category A versus B, but to identify the stimulus—that is, to ask, 
“Is there something there, and if so, what is it?” Once a categorical 
decision has been made, the observer may have very little decision-
incongruent evidence owing to the numerous possible alternative 
categories; the categories about which the observer has the most 
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estimations of motion direction indicated that they assumed any 
motion direction on the ‘wrong’ (unchosen) side of the reference cri-
terion to be impossible20,73 a similar effect has been reported in orien-
tation discrimination (Luu & Stocker, 2016). Stocker and Simoncelli 
explain these biases as maximizing ‘self-consistency’ to maintain 
stable interpretations of the environment, and their Bayesian model 
is conceptually akin to our Bayesian heuristic model that relies on 
decision-congruent evidence20. Both models have the advantage of 
reducing costly storage and computation requirements in maintain-
ing the full posterior probability distribution over many unchosen 
alternatives; in many real-life scenarios, this factor may overcome 
the need to minimize error in the expected estimation of motion 
direction, confidence, or other similar judgements. Additionally, 
despite reports that memory confidence appears to reflect the bal-
ance of evidence at the single neuron level74, it has also been sug-
gested that similar decision-congruent evidence dependence may 
underlie memory confidence in a task specifically designed to com-
pare the two computational approaches75, as we did here.

Here, motivated by previous studies15–18, we tested the hypoth-
esis that perceptual decisions and confidence judgements may 
involve dissociable mechanisms. Our findings go beyond previous 
behavioural results to reveal that decision-incongruent evidence 

information are the chosen category itself, and some (presumably 
known) ‘nothingness’ category. Thus, perhaps the detectability of 
a stimulus itself is a primary contributor to confidence16,54. In other 
words, in the actual environment, objects that are more detectable are 
generally more discriminable: if you can see it well, you can probably  
tell what it is very well. This implies that the neural circuitry  
developed for stimulus detection may be recruited for confidence 
despite their conceptual differences68,69, and perhaps even that the 
optimal solution to a laboratory-based discrimination task may  
not be the same as the optimal solution (or a heuristic-based 
approximation) in an ecologically valid setting. From an evolu-
tionary perspective, this recruitment of detection circuitry seems  
reasonable: when an organism must judge both what is out there in 
the environment and whether there is something out there (simulta-
neous identification and detection), reliance on decision-congruent 
evidence magnitude might very well lead to adaptive behaviour.

The observation that decision-incongruent evidence is discarded 
in certain types of post-decision judgements is not unique to confi-
dence: several authors have reported biases in continuous stimulus 
estimation70, especially following a categorical decision71, that seem 
to follow a similar pattern20,72. In one study, once subjects had made 
a categorical discrimination of motion direction, their subsequent 
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errors) and confidence in a decision. b, We fitted the assumed decoding noise in the SDT model, 𝛼 decoding, to each subject by degrading the predicted 
decision decodability (based on subjects’ performance and the stimulus decoder; see Methods: SDT forward model) to match the observed decision 
decodability. Incorporating this noise, we then used the model to predict the theoretical maximum for accuracy and confidence decodability for 
each subject. c, Given the presence of observed decoding noise, the model predicts that the theoretically expected maximal level of decodability for 
confidence will be above that for accuracy. (See Methods for explanation of the phrases ‘decision to accuracy’ and ‘decision to confidence’. No ratio is 
implied.) d, We compared the actual decodability for accuracy and for confidence achieved via the model to the theoretical maxima predicted by the 
model. Whereas mean accuracy decodability reached the theoretical maximum (t(5) =  1.58, P =  0.173), confidence decodability was significantly worse 
(t(5) =  2.868, P =  0.035). This indicates that confidence cannot depend purely on the same internal information as decision and accuracy. Shaded 
regions indicate the standard error of the mean.
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can indeed be read out from neural representations at the time of 
the confidence judgement, is used in the computation of the deci-
sion, and yet is discarded or ignored in the confidence computation. 
Specifically, this heuristical account provided a better fit to empirical 
data than a normative optimal model, as supported by our formal 
computational analysis. This over-emphasis on decision-congruent 
evidence is unlikely to be an ad hoc explanation, but rather seems to 
be the general strategy used by the brain in producing confidence 
reports in perceptual decisions. Future studies using similar neural 
decoding approaches may provide insight into use of neural evi-
dence under other task conditions in which confidence judgements 
appear optimal at the behavioural level54. Also, it may be beneficial 
to apply this approach to other datasets with more comprehensive 
spatial coverage, as well as to directly assess the complex relation-
ship between high gamma power, spiking activity, and lower fre-
quency field potentials (see Supplementary Results: Frequencies 
outside 80–120 Hz, and Supplementary Notes). These may help 
to test further whether self-consistency is truly a general principle 
contributing to an organism’s evaluation of its own internal uncer-
tainty. As it has been speculated that this strategy may account for 
a wide range of high-level social phenomena including cognitive 
dissonance reduction20, future investigation may be able to address 
the intriguing question of whether these mechanisms are common 
across species, or whether they might be uniquely human.

Methods
Details of the behavioural methods, ECoG data acquisition and preprocessing, 
support vector machine decoding, signal localization and generative Bayesian 
models can be found in the Supplementary Methods.

Choice probability analysis. Definition of evidence. In two-class linear SVM 
analysis, the result of training an estimator is a hyperplane that separates the two 
classes; one can take the dot product of the support vector coefficients (coefficients 
of the vector orthogonal to the hyperplane) and the support vectors themselves 
to determine the weights on each ‘feature’. We then define whether a given feature 
provides evidence towards classifying the stimulus in a given trial as a face versus 
a house as the sign of its feature weight based on an SVM estimator trained on 
the trial-by-trial stimulus (‘stimulus’ estimator). Thus, mathematically, we define 
evidence for each timepoint t as

∑=
∈

E n t
e t

f n t i( , ) 1
*( )

( , , ) (1)s
s i e t

s
*( )s

where

= × ×f n t i w g I( , , ) (2)s i n t i i, ,

Here, Es(n, t) represents the overall evidence value for a given stimulus type 
s (face/house) and timepoint t in trial n, es*(t) represents the set of electrode-
frequency features forming evidence for stimulus type s at timepoint t, |es*(t)| 
represents the cardinality of es*(t) (that is, the number of elements in the set), wi 
represents the weight (described above) assigned to electrode-frequency feature 
i by the stimulus SVM estimator, gn,t,i represents the high-gamma power in trial 
n at time point t for electrode-frequency feature i, and Ii is an indicator function 
such that Ii =  1 if the sign of wi matches the sign of the stimulus category s and 0 
otherwise. Importantly, this definition of evidence maximizes the independence 
of ‘face evidence’ and ‘house evidence’, so their contributions to decisions and 
confidence can be independently evaluated.

Definition of balance-of-evidence and response-congruent-only rules. We evaluated 
two rules for predicting subjects’ trial-by-trial decisions and confidence 
judgements: the balance of evidence favouring the decision versus that against 
the decision (balance-of-evidence), and the evidence favouring the decision alone 
(decision-congruent-only). Behavioural decisions and confidence for each subject 
were assigned as hits and false alarms according to standard ROC methods51, and 
the AUC was calculated as before to obtain choice probability (CP) values for each 
subject for each rule. Conceptually, these hit and false alarm assignments were 
similar across both decision and confidence ROC analyses. Specifically, ROC 
methods sweep a criterion c through the decision value space, categorizing trials on 
the basis of whether their ‘scores’ (decision values; that is, the result of a particular 
classification rule) fall above or below c. For decisions, scores for the balance-of-
evidence rule were defined as trial-by-trial face evidence minus house evidence. 
This leads to a ‘hit’ being defined as (face evidence) – (house evidence) >  c (‘face’ 
response anticipated) and the subject responded ‘face’; and a ‘false alarm’ being 

defined as (face evidence) – (house evidence) >  c (‘face’ response anticipated) but 
the subject responded ‘house’. The decision-congruent-only rule for decisions was 
defined as the average of the ROC curves and CPs for face evidence alone (on both 
face and house trials) and for house evidence alone (on both face and house trials) 
(Fig. 3a). For confidence, a balance-of-evidence ‘hit’ was defined as (response-
congruent evidence) – (response-incongruent evidence) >  c (‘high confidence’ 
anticipated) and the subject responded ‘high confidence’, and a ‘false alarm’ defined 
as (response-congruent evidence) – (response-incongruent evidence)  >  c (‘high 
confidence’ anticipated) but the subject responded ‘low confidence’.

These CP values were used to assess the relative contribution of each type of 
evidence to decision and confidence over the analysed time period; note that a CP 
value of over 0.5 indicates that a given classifier is informative with regard to trial 
outcome (either decision or confidence), as this means that hits rise more rapidly 
than false alarms. We evaluated whether the CPs were significantly different from 
chance (CP =  0.5) using two-tailed t-tests, as well as inspecting differences in the 
CP performance of the balance-of-evidence versus decision-congruent-only rules 
for predicting decision and confidence using a 2 (rule) ×  2 (behaviour) repeated-
measures ANOVA.

SDT forward model. In standard SDT, on a given trial the internal evidence 
available to a system can be represented as x, a sample drawn from one of two 
distributions representing stimulus alternatives in a discrimination task (for 
example face/house; Fig. 4a). For an unbiased observer, the sign of x dictates 
which category the observer will choose, such that positive x leads to a ‘face’ 
decision and negative x to a ‘house’ decision. Likewise, the magnitude of x, or its 
distance from the decision criterion at zero, indicates how strongly it indicates a 
‘face’ or ‘house’ choice, and thus dictates accuracy (probability of being correct). 
A normative observer should also rate confidence according to this same absolute 
magnitude: because the farther x is from zero the more likely a decision is to be 
correct, the more confident observers should be in their categorization choices 
(Fig. 4a).

Two-class linear SVM classification provides exactly such a ‘sample’ x in 
the form of the decision value (the trial-by-trial estimates ŷ; see Supplementary 
Methods) for each trial, such that positive ŷ predict that the trial belongs to 
one group, and negative ŷ the other (assuming no intercept bias). Following 
the normative framework, machine-learning methods such as SVM explicitly 
assume that the farther ŷ is from the decision hyperplane, the more confident 
the classifier should be about its classification performance76. We therefore apply 
this forward model logic to the SVM decision values ŷ to predict from decision 
to accuracy and confidence: we use the absolute value of the SVM ŷ values for the 
decision estimator as inputs to the ROC analysis indexing classifier accuracy for 
accuracy and confidence on a trial-by-trial basis (see Supplementary Methods 
for more details). We tested this forward model’s power to predict from ‘decision 
to accuracy’ and from ‘decision to confidence’ (Fig. 4c,d). All analyses and 
simulations were completed through custom-written software in MATLAB R2013a 
(MathWorks; Natuck, MA).

Evaluation of model. It would be unrealistic to assume that these SVM decision 
values ŷ for the decision estimator represent a lossless readout of the internal 
decision variable x for each subject’s face/house decision on each trial. If they 
represented a lossless readout, we would be able to decode all subjects’ decisions 
(face/house button presses) with 100% accuracy with the SVM approach. Because 
decoding of decision does not reach this ceiling, we must instead assume that these 
ŷ for the decision estimator are corrupted by some decoding noise with respect 
to the true internal decision variables x that dictate whether a subject said ‘face’ 
or ‘house’ (Fig. 4b). It is important to estimate this decoding noise empirically to 
validate the forward model. Essentially, this noise can be thought of as, “What is 
the signal degradation or noise that exists between the subject’s access to his/her 
own neural representations, and our ability to access those neural representations 
through ECoG and an SVM decoder?” We estimated this decoding noise, αdecoding, 
for each subject by building a simulated observer as follows. (Note that αdecoding will 
also therefore account for decoding noise due to subjects’ errors, for example if a 
subject meant to indicate ‘face’ but erroneously pressed the ‘house’ button, as well 
as any degradation of signal due to limited spatial coverage with ECoG.)

Each subject’s dʹ (objective performance capacity51,52) was first calculated from 
their behavioural data. Next, for each subject, using Monte Carlo simulations, 
we drew 1,000 samples x, representing the internal decision values, from each of 
two Gaussian distributions representing ‘face’ and ‘house’ centred at ± dʹ/2 with 
standard deviation 1. Samples were classified according to the simple rule that x >  0 
means ‘face’ and x <  0 means ‘house’ to provide the normative observer’s decision 
(face/house), and subsequently classified as correct or incorrect according to the 
distribution that had generated them. We then used x to compute the decision 
ROC according to standard methods51 to calculate the area under the curve 
(AUCdecision). Following the above discussion, we then computed AUCaccuracy by the 
same method on |x|, the absolute value of x. To find the confidence criterion c used 
by each subject to separate confidence responses into ‘high’ versus ‘low’ (Fig. 4a), 
we swept through possible values for c from 0 to 5 in steps of 0.01, classifying |x| >  c 
as ‘high’ confidence and |x| <  c as ‘low’ confidence, to find the value of c that would 
provide a match to the proportion of ‘high’ and ‘low’ confidence responses given by 
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each subject. Finally, we computed AUCconfidence on these |x| values also according to 
the same methods as used for accuracy.

By using each subject’s behavioural sensitivity and confidence criterion, this 
process provides a theoretical maximum for decodability of decision, accuracy and 
confidence. However, this theoretical maximum will in practice also be dictated 
by noise (αdecoding) in the decoding process that corrupts our ability to access a 
subject’s internal decision variable via an SVM decoder. To estimate αdecoding for 
each subject—that is, how ‘bad’ the SVM is at extracting the decision values that 
the subjects have access to in their own brains—we assume the following simple 
relationship between the SVM decision values ŷ and the true internal decision 
variable x:

σ
σ

εˆ = +ˆy x( ) (3)
y

x

with ε ~ N(0, αdecoding). Because ROC analyses do not depend on the actual values  
of x, only the shape of their distribution, we ignore the scaling factor σ

σ
ŷ

x
 and  

define a proxy for ŷ in simulation space:

ε= +x x* (4)

We fit αdecoding at each timepoint in the peri-stimulus window by minimizing 
the sum of squared error between AUCdecision calculated on ŷ (the true decoding 
accuracy for the decision estimator at that timepoint) and AUCdecision calculated on 
x* under increasing αdecoding noise at each timepoint in the peri-stimulus window 
for each subject. These best-fitting values for αdecoding were then used to predict the 
noisy theoretical maxima for AUCaccuracy and AUCconfidence given decoding noise, 
again at each timepoint in the peri-stimulus window for each subject.

It should be noted that the theoretical maxima for AUCaccuracy and  
AUCconfidence differ from one another because of the mathematical relationship 
among trial-by-trial accuracy, trial-by-trial confidence and trial-by-trial decision 
values x. According to SDT and other optimal models, ‘confidence’ is defined  
as the magnitude of the difference between the internal decision variable for 
‘decision’ and the decision criterion5,9,11. As a result, confidence can be predicted 
almost perfectly from the internal decision variable for decision: the farther away it 
is from the decision criterion, the more confident one should be (Fig. 4a).  
On the other hand, for near-threshold psychophysics experiments such as the 
present one, predicting accuracy based on the magnitude of the internal decision 
variable is somewhat less trivial, although also mathematically clearly defined. 
Specifically, when the internal decision variable for decision is near the criterion, 
one does not always make errors; because of chance, one in fact makes a good 
portion of correct responses even in this range (Fig. 4a). Despite this, one should 
always be ‘low confidence’ in such near-criterion cases. As such, the theoretical 
bounds for how much one can decode confidence and accuracy are intrinsically 
different, with confidence theoretically easier to decode than accuracy from the 
magnitude of the internal decision variable under a given level of noise.

Therefore, if the forward model is true, and confidence is decoded from 
the same internal evidence as decision, then both accuracy and confidence 
decodability resulting from the rectified SVM decision values should reach these 
theoretical maxima. If, in contrast, confidence depends on information other 
than the magnitude of the internal decision variable for decision (that is, does not 
depend solely on the balance of evidence for face versus house), then accuracy 
decoding—defined by the trial-by-trial decision—should reach the theoretical 
maximum but confidence decoding should not. We tested whether the theoretical 
maximum for accuracy and confidence decoding had been reached via this 
forward model by using two paired t-tests to compare the mean decoding accuracy 
for accuracy and confidence from the SVM features to this theoretical maximum 
across the peri-stimulus time window. As before, to reveal global trends as a 
function of time, we smoothed the data using a five-point moving average  
(window size 50 ms).

Data availability. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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