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Supplementary Methods

Behavioral methods

We studied six patients (5 females, 1 male, age range 19-46, all right handed) at the
Comprehensive Epilepsy Center of New York University who had surgically implanted
intracranial electrodes for monitoring for potential resection due to epilepsy (Supplementary
Table 1). The electrodes were implanted on the cortical surface for clinical reasons independent
of this research. Sample size was thus determined by availability of patients and data acquisition
particulars. This study was approved by the New York University Medical Center ethics board,
and all patients gave written consent to participate.

In each trial of the behavioral task, 2s of a fixation point were presented, after which the fixation
point disappeared and either a face or a house was presented for 16ms. After that, the screen
went blank until the subject made a response or 3.5s had elapsed. Responses were made via 4
keys, representing each combination of face/house and high/low confidence. Responses were
made with one hand (Figure 1a, main text). All stimuli were presented on a portable laptop with
gamma-corrected screen luminance, and responses were collected via the keyboard via button
presses made with one hand. All stimuli were converted to grayscale and matched for size,
luminance, contrast, and spectral power. They were then windowed with a blurred oval mask to
minimize border effects, and covered with randomly generated noise pixels at run-time.

Subjects first underwent a psychophysics threshold estimation procedure to determine stimuli
contrasts that would titrate objective performance at about 75% correct split across two contrast
levels. Stimulus contrasts were titrated during a thresholding procedure such that subjects would
perform approximately 75% correct in the face/house discrimination task. Two
randomly-interleaved staircases presented the stimuli while modulating the contrasts to
determine each individual patients’ psychometric function. One staircase was a 3-down-1-up and
the other was a 2-down-1-up, which were expected to converge on 79% and 71% correct,
respectively'?. The staircases started at 60% and 40% contrast, and changed by 6% until 4
reversals occurred, after which they changed by 1%. Thresholding continued until the patients
had made 8 reversals in each staircase, at which point the averages of the final 8 inflection points
for each staircase were chosen as fixed stimulus contrasts for the main experiment. During the
subsequent trials, stimuli were presented at one of the two staircase-determined contrasts in a
counterbalanced manner.

Subjects completed an average of 415.17+183.93 face/house discrimination trials each (because

of the clinical setting in which these studies were conducted, it is difficult to control the number
of trials completed by each subject).

Electrocorticography acquisition and preprocessing

Usable signal was recorded from 874 electrodes across all six subjects (1 = 145.7 electrodes per
subject). Three of six subjects had electrodes in one hemisphere only, while the other three had
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bilaterally implanted electrodes. Subjects demonstrated similarly distributed electrode spread
(Supplementary Table 2). MNI coordinates for all electrodes for all subjects are included as a
supplementary spreadsheet, and data is available upon request.

ECoG was measured using a custom-built system based on the open-source N-Spike acquisition
system, with up to 256 simultaneous channels at a 30 kHz, 16-bit sampling rate. Built-in filters
high-pass filtered at .6 Hz, and low-pass filtered at 10 kHz. Signals were subsequently
downsampled and converted to 500 Hz, 32-bit floating data prior to preprocessing. After
downsampling to 500 Hz, individual trials and channels were manually inspected for artifacts
and epileptic activity and removed if necessary as routine procedure at the Schwartz Health Care
Center (HCC) of the New York University Medical Center (NYUMC) and the NYUMC
Comprehensive Epilepsy Center, and again by the present research team. Thus, epileptic
electrodes were not included in the analysis. Line noise and harmonics were removed by notch
filters at 60, 120 and 180 Hz. Spectral power was computed via a short-time Fourier transform
using the multitaper method® in MATLAB R2013a (MathWorks; Natuck, MA). We time-locked
the activity for each trial to stimulus onset. The spectrum was normalized using single-trial
baseline normalization using the period between 500 and 1500ms before stimulus onset as
baseline*: for each frequency-time point in each trial, the mean baseline power for that frequency
band was subtracted from the raw power, and the difference was then divided by the standard
deviation of the baseline power in that frequency across trials. The log was taken to make the
power distribution approximately normal. Epochs for decoding were defined as the time period
from 250ms before stimulus onset to 1000ms after stimulus onset.

All electrodes” MNI coordinates are available as a supplementary dataset.

Support vector machine decoding

We explored the extent to which two trial-by-trial behavioral factors y could be classified by
support vector machine (SVM) estimators (see next section): (1) the perceptual Decision made
by the patient (face/house); and (2) the Confidence rating given by the patient (high/low). To
define Evidence for the choice probability analyses (see main text Methods), we also trained an
additional estimator based on the stimulus presented on each trial.

Support vector machine estimators. Linear multivariate estimators were defined to predict a
vector y of trial-by-trial categorical labels (e.g., face vs. house) or ordinal labels (e.g., high vs.
low confidence) from a matrix of ‘Features’: trial-by-trial ECoG power in the high-gamma bands
([80 90 100 110 120 Hz], short-time multitaper method®, 15 Hz half-bandwidth, 100 ms
windows, 10 ms steps) at each sampling timepoint (X, with dimensions 7, %X (M .,00s ¥
Mjoquencies = 1 timepoint)), 1.e. ‘electrode-frequency-timepoints’. These timepoints were defined on
the peri-stimulus window from -250ms (before stimulus onset) to 1000ms after stimulus onset.
We focused on high-gamma because this frequency range has demonstrated connection to
perceptual processes’®, neural firing rates’'®, and relationship to the BOLD signal in fMRI'72°.
Importantly, this range was observed to be most salient in the stimulus-locked spectrograms
(Supplementary Figure 1). Below we also show that including lower frequency ranges only
diluted the decodability of Decision and Confidence behavioral factors, but did not change the
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qualitative pattern of results (see Supplementary Notes). Because of these considerations, and
that SVM decoding can suffer from overfitting if the number of Features vastly outnumbers the
number of trials for training and testing (as with all data fitting methods*'), we focus on the most
salient frequencies in order to minimize the possibility of overfitting by reducing the Feature
space, while also minimizing computational demands.

Cross-validation and classifier performance. For time-series analyses, each estimator was fitted
to each subject individually at each time sample. That is, for each of the behavioral factors
described above, we fitted n,,, estimators on an X matrix (M. % (Muecnroges X Mioquencies < 1
timepoint)) to predict a vector y. We used 5-fold stratified cross-validated L2-regularized L2-loss
linear SVM classification (dual) implemented through the 1iblinear package® in 1ibsvm>’: each
iteration generated predictions on 1/5™ of the data (test set, X, ) after being fitted to the other
4/5™ of trials (training set, X, ) while maximizing homogeneity between training and test sets
via stratification. All SVM parameters were set to default values as provided in the 1iblinear
package (e.g., soft margin parameter C = 1); continuous decision value outputs (coding the
strength of categorization results) were taken as trial-by-trial estimates of y. The performance of
the classifier was assessed via comparison of y,, to ¥, via an empirical Receiver Operating
Characteristic (ROC) analysis* taken across all test trials at each fold, which plots the percent of
hits (true positives) against false alarms (false positives) as a function of varying criterion values
to classify the data into two categories. (The farther from the decision boundary a given decision
value 7 is, the more likely it ought to be to reflect a correct classification*'.) When averaged
across folds, this analysis resulted in an Area Under the Curve (AUC) score for each estimator,
ranging from 0 to 1 with chance classification performance being defined at 0.5. We refer to
AUC as ‘decoding accuracy’ or ‘classification accuracy’ in the main narrative for ease of
interpretation. AUC was defined as being above chance for each subject when empirical p-values
for the average AUC in 50ms bins, found via empirical permutation tests (100 permutations at
each fold), were below p = 0.05. To reveal global trends as a function of time in visualization
(Figure 2, main text), AUC scores were smoothed using a 5-point moving average (window size
50ms). All analyses were completed through custom-written software in MATLAB R2013a
(MathWorks; Natuck, MA) and SPSS Statistics 22.0 (IBM).

time

To quantitatively examine the decoding patterns for the two estimators, we binned the AUC for
each estimator as a function of time into post-stimulus time bins of 50ms. We calculated the
mean AUC for each estimator in each of these bins, and conducted permutation tests (100
permutations in each fold) to identify an empirical p-value, to evaluate when each estimator
achieved above-chance performance across subjects.

Neuroanatomical localization of representations

We used a transformation of the modified F-scores>>* for estimators to define electrodes’
contribution to decoding. Given training instances x,, i = 1, ... , /, the F-score of the jth Feature
for estimator e is defined as:
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where n, and n_ are the number of positive and negative instances, respectively; )_Cj X, )_cj._)
are the average of the jth Feature of the whole, positive-labeled, and negative-labeled data sets;

and )_c:) / )_c:) is the jth Feature of the ith positive/negative instance. Following previous work %,

the numerator denotes the inter-class variance, while the denominator is the sum of the variance
within each class. A larger F-score indicates that the Feature is more discriminative®. Note that
the modified F-score is calculated directly from the high-gamma power in each
electrode-frequency-timepoint and is therefore independent of any assumptions made during
SVM estimator training.

Because these modified F-scores are approximately exponentially distributed, to define an
electrode’s contribution to an estimator’s predictive capacity, we first took the mean log modified
F-score for each electrode-frequency Feature at each timepoint from 0 to 1000ms after stimulus
onset across frequency bands. We then z-scored the results across frequency bands and
timepoints to create a standardized contribution index C such that

C.(E,D)=z2 (ﬁ Z log (Fe(j’t))> (Sz)
re[8

0.120]

where C,(E,t) is the contribution to estimator e of electrode E at time ¢, f indicates the
frequency band in the 80-120 Hz range, |f*| indicates the cardinality of the Feature bands to be
averaged across (in our case, 80-120 Hz in bands of 10 Hz gives five frequency bands, so in all
cases | f*¥ = 5), F.(j,t) refers to the modified F score (Equation S1) of electrode-frequency
Features j at timepoint 7 (i.e., only electrode-frequencies at timepoint ¢ are taken as contribution
at that timepoint), and z(-) refers to the standard z-score transformation across all modified
F-scores for all electrode-frequency-timepoint Features j for that estimator. By taking the
standard z-score transformation, each Feature’s contribution is normalized such that we examine
the relative contribution of each Feature to an estimator’s decodability, to the extent the estimator
is actually decodable -- that is, regardless of the magnitude or significance of the decodability
itself. We did this separately for Decision and Confidence, and plotted each electrode’s average
C value in each lobe as a function of time after stimulus onset (Figure 2b, main text) and binned
in 200ms time bins to facilitate further statistics and interpretation. All electrodes’ MNI
coordinates are available as a supplementary dataset.

We assigned each electrode as belonging to one of the four neocortical lobes based on its MNI
coordinates, and plotted the average contribution index C within each lobe as a function of time
after stimulus onset (Figure 2c, main text). To quantitatively test for differences in the spatial
representation and timecourse for each predictor, we ran a mixed design ANOVA with ‘between’
factor lobe (4: frontal, parietal, temporal, occipital) and ‘within’ factors predictor (2: Decision,
Confidence) and coarser time bins than used in the significance testing (5: 0-200, 200-400,
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400-600, 600-800, 800-1000ms) on electrodes’ contribution index C values across all subjects.
We opted to use coarser time bins to reveal global trends in neuroanatomical localization, as an
ANOVA on the 50ms bins used in the significance testing would reveal uninterpretable, complex
interactions.

Generative Bayesian models

Details of both the Bayesian ideal observer model?’ and the Decision-Congruent Evidence
Bayesian heuristic observer model® have previously been described elsewhere. All simulations
were completed through custom-written software in MATLAB R2013a (MathWorks; Natuck,
MA).

Two-dimensional framework. In the one-dimensional forward model described in the main text
methods, the decision value x by definition reflects a Balance of Evidence for the two stimulus
alternatives: the more x indicates Evidence favoring ‘face’, the less it favors ‘house’ and vice
versa. To independently evaluate the different contributions of Decision-Congruent and
Decision-Incongruent evidence with respect to multiple possible computation rules for
Confidence, it is necessary to rely on a two-dimensional representation of the decision space to
decompose x into independent estimates of Face Evidence and House Evidence®
(Supplementary Figure 2).

Bayesian ideal observer. The Bayesian ideal observer makes both Decisions and Confidence
judgments according to the same computations. Following previous work?’, we assume each
generating category C is dependent on the evidence strength s favoring one or the other stimulus
category (face/house), and can be represented as a bivariate Gaussian distribution such that C, .,
~ N([s, 0], X) for a ‘Face’ trial and C, .. ~ N([0, s], X) for a ‘House’ trial. In its most basic
formulation, we define X~ = I, where I is the 2x2 identity matrix. (Note: because of the scale of
Evidence as it is defined, we scale X so that the noise does not overwhelm the samples such that

% =0.01xJ).

Because the absolute evidence level is of course unknown to the observer, the face/house
Decision is made by marginalizing over possible evidence levels to produce the posterior
probability estimate of the trial being a Face or a House trial®’. Thus the joint probability of each
trial type and evidence level is estimated through Bayes’ rule,

p(C.slx) = ;% o

and then the secondary variable of evidence strength s is integrated out, leaving estimation of the
posterior probability of each face/house category via the marginal distribution

p(Clx) = [ p(C,slx) ds (S4)

In the simplest form, both face/house categories have equal prior probability, and so the observer
makes its Decision via
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C = argmax, p(C |x) (S5)

chosen
Finally, because confidence is judged simply as the probability of being correct, we define

confidence = p(correct) = p(Cchom|x) (S6)

Decision-Congruent Evidence Bayesian heuristic observer. Rather than calculating Confidence
in a Decision based on the Balance of Evidence both in favor of the selected choice and related
to the unselected choice(s), the Decision-Congruent Evidence Bayesian heuristic model instead
discards evidence favoring the unselected choice (Decision-Incongruent Evidence), and to
compares the strength of evidence for the selected choice both to a prototype along the selected
dimension and to the noise distribution:

. - PC cosendP(C cpggen)
confidence = P(Coppunl) = Scia e peVw) 7
with N representing the noise, or nothingness distribution and C chosen TEPTESENtING the prototype.
This strategy corresponds to a Decision-Congruent Evidence rule, i.e. that the only relevant
information in judging Confidence is the magnitude of evidence favoring the Decision that was
made. Note that previous formulations of this model assume that the Decision-Incongruent
Evidence is explicitly discarded and the internal evidence remapped, e.g. that if ‘Face’ is
selected, the evidence to be evaluated is x* = [x(1), 0]; however, this explicit discarding does not
change the behavior of the model from the current formulation.

Model evaluation and comparison. Rather than generate the samples x as would be typical in a
Monte Carlo simulation of a generative model, we directly evaluated the Face and House
Evidence samples defined from the SVM feature weights as in the choice probability analyses
(Methods: Choice probability analysis, Equations 1 & 2, main text). Each trial-by-trial sample,
for each subject, is therefore a two-dimensional point, i.e. x = [Evidence, ., Evidence,,,.]-
Although the Evidence is defined according to the SVM estimator trained on the presented
stimulus, subjects were not at 100% accuracy; this means there is some internal noise in the
system that may be attributable to neuronal factors in addition to the decoding noise, @,y
discussed in the main text methods. This noise is not directly estimable, because decoding
accuracy did not reach behavioral accuracy, and so the decoding noise overwhelms any internal
noise. Therefore, we consider another source of noise, such that x* = x + ¢, with € ~ N(0,0).

Each of the above-described models makes a decision about each noise-corrupted sample
according to Equations S3-S5, and then rates confidence according to its own rule (Equation S6
or S7). Because we cannot explicitly estimate internal neural noise, for each model we iteratively
examined a range of noise levels, varying from ¢ of 0 to 0.01 in steps of .001 (note the scale of
the Evidence is very small, such that maximal Evidence for most subjects is on the order of 0.1).
Because the number of trials completed by each subject is small, we ran each simulation 1000
times with different random seeds on each run. This produced a total of 22,000 sets of
trial-by-trial Confidence predictions (2 models x 11 noise levels x 1000 runs) for each subject.
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We used standard ROC choice probability (CP) analysis®* as above to quantitatively evaluate the
models’ predictions by calculating their choice probabilities: we compared the predicted
Confidence ratings for each subject, for each of the 22,000 simulation sets, to the empirical
Confidence ratings produced by the subject on a trial-by-trial basis by computing the area under
the curves (AUC) as a measure of each model’s performance, i.e. its CP.

To evaluate whether the Decision-Congruent-Only rule for computing Confidence is a better
predictor of subjects’ Confidence behavior than the Balance-Of-Evidence rule, we conducted a 2
(Confidence model: Balance vs. Decision-Congruent) x 11 (noise level) repeated-measures
ANOVA on the mean CP for each model at each noise level for each subject. We also calculated
the average difference between CPp i on congruent @1d  CPp0c. across subjects at each noise level;
if the two rules for computing Confidence are truly equivalent, this difference should not deviate
from 0 at any noise level. Finally, we calculated the exceedance probability of one model being
more likely than the other model across all 33,000 simulation runs and all six subjects. The
exceedance probability is particularly intuitive as all exceedance probabilities sum to one over
any number of tested models.
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Supplementary Results

Behavioral results

Additional behavioral results are presented in Supplementary Figure 3.

Decoding results

Numbers supporting the graphical presentation in Figure 2 (main text) are presented in
Supplementary Table 3.

Motor preparation

It is important to note that decodability for all factors reached above-chance levels well before
any movement onset (mean RT = 1136ms). Because finger movement preparation can typically
be decoded only up to 200ms before movement onset with ECoG*', and because responses via
four unique button-press combinations were executed with one hand, this result rules out the
possibility that decoding is based on movement preparation or execution and not internal
representations of stimulus properties or decisional calculations (see also next section).

However, to comprehensively rule out the possibility of motor preparation driving our decoding
results, we performed a response-locked analysis. We lined up trials by reaction time rather than
stimulus onset and calculated the pairwise Contribution Index (see above, Equation S2) for each
button, i.e. each finger, compared to the others. We then examined the degree to which
electrodes in or adjacent to primary motor cortex (based on MNI coordinates) for each subject
would contribute to decoding this actual motor movement as opposed to the Decisions
themselves in the 500ms window leading up to the motor movement itself, marked by the
reaction time on each trial. We compared this to how these electrodes behaved in the
stimulus-locked analysis (main text Results).

This analysis revealed that electrodes near the motor cortex did indeed carry information about
which finger was used to press a button when the information was lined up to the motor
movement, as shown by the increasing trend of the Contribution Index as the reaction time
approaches (Supplementary Figure 4b). However, these electrodes did not carry information
about the Decision when the trials were locked to motor movements rather than stimulus onset
(Supplementary Figure 4b): the Contribution Index for these electrodes was flat across the
examined time period leading up to motor movement (button press), suggesting that Decision
information is not available in motor planning or execution areas when the information
accumulation stage is ‘scrambled’ due to changing the trial-by-trial alignment from
stimulus-locked to response-locked. This dissociation is in stark contrast to the practically null
and certainly not increasing contribution of these units to decoding either Decisions or motor
movements when the analysis was stimulus-locked (as in the main results) (Supplementary
Figure 4a). This result demonstrates that motor preparation and execution does not contribute to
decoding of the Decision. We also checked to ensure that high gamma power did not differ
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between high or low confidence trials when trials were response-locked (Supplementary Figure
5).

Neuroanatomical localization of representations

An axial view and subject-by-subject plots of the Contribution Index (Figure 2b, main text) are
presented in Supplementary Figures 6 and 7.

The mixed design ANOVA with ‘between’ factor lobe (4: frontal, parietal, temporal, occipital)
and ‘within’ factors predictor (2: Decision, Confidence) and coarser time bins than used in the
significance testing (5: 0-200, 200-400, 400-600, 600-800, 800-1000ms) revealed main effects
for predictor (F(2,1870) = 1.758, p < .001), time bin (F(4,3480) = 44.723, p < .001), and lobe
(F(1,870) = 4.668, p = .003), as well as an interaction between the two ‘within’ factors of
predictor and time bin (F(8,3480) = 6.156, p < .001). Crucially, the ‘between’ factor of lobe
interacted with all ‘within’ factors: predictor x lobe F(6,870) = 6.875, p < .001; time bin x lobe
F(12,3480) = 6.972, p <.001; predictor x time bin x lobe F(12,3480) =2.294, p = .007.

To explore these interactions, we conducted a series of step-down ANOVAs: two step-down 4
(lobe) x 5 (time bin) mixed design ANOVAs, one for each predictor; and five step-down 4 (lobe)
x 2 (predictor) mixed design ANOVAS, one for each time bin (Supplementary Tables 4 & 5).

Representational overlap

To ensure that the observed dissimilarity in representations was not due simply to noise, we
directly examined the neuranatomical overlap of the Decision and Confidence representations.
We ranked the electrode-frequency-timepoint Features according to their informativeness in
decoding each factor independently (Equation S1)*7°, and selected a subset (the top 25%) of
these Features for closer inspection. If Confidence shares the Decision representation, we should
expect a large proportion of these most informative Features to be the same between Decision
and Confidence even in the presence of significant noise.

32.41% of the top 25% of Features were shared were shared between representations of Decision
and Confidence. We assessed the anatomical locus of the overlapping Features by calculating the
percentage of overlapping Features in each neocortical lobe at each poststimulus timepoint (note:
there are five Features per electrode at each timepoint, corresponding to power in 80, 90, 100,
110, and 120 Hz frequencies).

This analysis revealed a strong overlap in occipital electrodes, especially at 200-500ms post
stimulus onset (Supplementary Figure 8). Overlap was second strongest in temporal regions in
the same time period, and rose in parietal regions towards the end of the post-stimulus response
window. Overlap was smallest in frontal regions across the whole post-stimulus time period.

It is worth noting that although nonzero modified F-scores for a given channel or frequency
might indicate an area that is doing something other than the task-relevant processing, we might
hope that such task-irrelevant processes would be at least somewhat common across both

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/541562-017-0139 | www.nature.com/nathumbehav 10

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://dx.doi.org/10.1038/s41562-017-0139

SUPPLEMENTARY INFORMATION

Decisions and Confidence judgments -- e.g., pressing keys, remaining focused on the screen,
being bored with the task, mind wandering, eye blinking, heartbeat, etc. -- and so if anything
would artificially inflate the number of shared features between Decisions and Confidence
judgments rather than deflate their feature overlap.

As an additional test of representational overlap, we also examined whether electrodes that
demonstrate stimulus selectivity (i.e., face- or house-tuned electrodes) might also carry
meaningful information about confidence in a tuning-specific manner. For this analysis we
defined electrodes as significantly selective to ‘face’ or ‘house’ Decisions via one-tailed t-tests of
the average high-gamma power in the window between Oms and 500ms after stimulus onset,
based on the observation that the most salient response happens before 500ms post-onset
(Supplementary Figure 1). If this average power was significantly greater (at p <.05) for trials in
which the participant made a ‘face’ Decision over when the participant made a ‘house’ Decision,
the electrode was designated as ‘face-selective’; we used the same approach to define
‘house-selective’ electrodes.

For electrodes that demonstrated significant selectivity for face or house Decisions, we next
examined the average response in trials where the participant responded ‘high confidence’ versus
‘low confidence’ as a function of whether the participant’s Decision on that trial was congruent
with the electrode’s tuning. For example, we examined whether for “face-selective” electrodes,
average high-gamma power was more different in ‘high confidence’ versus ‘low confidence’
trials when the participant responded ‘face’ than when the participant responded ‘house’.

This analysis revealed that despite the largely separable representations for Decisions and
Confidence (main text Figure 2), there are also individual electrodes that carry some information
about Confidence even though they were also identified as significantly responsive to
participants’ Decisions. Importantly, as we hypothesized these electrodes’ activity reflected
Confidence in a manner consistent with the Decision-Congruent Evidence rule: for example,
when a ‘face-selective’ electrode carries information about Confidence, it appears to be primarily
on trials when the participant made a ‘face’ Decision in a manner congruent with the electrode’s
tuning (Supplementary Figure 9). In contrast, when the subject makes a Decision that is
incongruent with the electrode’s selectivity (e.g., ‘house’), there is a much smaller difference
between the high-gamma power in high versus low confidence trials.

To confirm this visual interpretation, we averaged the difference in activity for high versus low
confidence trials as a function of choice congruency, and compared their means across the entire
time window with a two-sample t-test. This revealed that, confirming visual inspection, the
average difference between high versus low confidence activity was significantly higher for
trials in which the participant made a Decision congruent with the electrode’s tuning preference
(t(114) = 4.133, p < .001), lending further credence to the Decision-Congruent Evidence rule for
computing confidence.
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Choice probability analysis

Subject-by-subject plots of the choice probability ROC curves are presented in Supplementary
Figure 10. Planned post-hoc t-tests for Choice Probabilities revealed that all surpassed chance
level (Supplementary Table 6).

To ensure that results from this analysis are not overly dependent on our particular definition of
Evidence, we performed a confirmatory analysis. In this confirmation, we defined electrodes as
being ‘face’ or ‘house’ selective via a set of Bonferroni-corrected t-tests comparing high-gamma
power at each post-stimulus timepoint against the average high-gamma power during the
baseline (pre-onset) period. This allowed us to identify post-stimulus timepoints at which ‘face’
or ‘house’ vs. baseline high-gamma power was significant, which we interpreted as a set of
electrode-frequency-timepoints that were significantly responsive to faces versus houses
independently of one another. We then removed all electrode-frequency-timepoints that were
common to both faces and houses (which additionally addresses concerns about task-irrelevant
processing). Finally, we used the remaining electrode-frequency-timepoints to define Evidence
similarly to how it is defined in the main text, but with an important modification that avoids
reliance on SVM feature weights.

This new definition of Evidence thus modifies Equation 2 in the main text, which reads
fi(n,t,i) = |wl.| g1 (main text 2)

to read

=

fs(n’ts l) = gn,;,j - ﬁl : gn,t,i (SS)
J

1l
—_

By this simpler definition, which does not depend on the sign of the SVM feature weights or the
sign of the signal for each feature, we obtained the same results as the main analysis: the
Balance-of-Evidence rule predicted Decisions much better than the Decision-Congruent-Only
rule (t(5) = 12.31, p < .001) but for Confidence the Choice Probabilities were no different
between the two computational rules (t(5) = -1.60, p = .17) (Supplementary Figure 11).

Lag in predicting from Decision to Confidence?

To address the stability of the representations of the Stimulus, Decision, and Confidence, we
performed temporal generalization analyses* both within each estimator and cross-predicting
from Stimulus and Decision to Confidence. This analysis helps explore whether the failure in
cross-predicting was due to temporal lag between calculations of Type 1 (Decision) and Type 2
(Confidence) judgments.

To quantify the effect of potential temporal lag, the Decision estimator fitted at each timepoint ¢
as above was tested on its ability to decode Confidence at all other timepoints ¢’ for each trial
after taking the absolute value of the Decision SVM estimator decision values, y, as above. This
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type of analysis results in a square generalization-across-time (GAT) matrix, where the y-axis is
the time at which the estimator was fitted, and the x-axis is the time at which the estimator was
evaluated****. Temporal generalization analyses were performed on the same time peri-stimulus
window as the previous analyses: -250ms to 1000ms. Note that when cross-predicting from
either Stimulus or Decision to Confidence, the absolute value of the SVM decision values y was
taken according to standard signal detection theoretic approaches -- see also the Signal Detection
Theoretic Forward Model section in the main text Methods.

All of these temporal generalization analyses suggested that while Decision shares many features
with Stimulus -- mostly localized to occipital areas, as presented in the present version of the
manuscript -- the overlap from these to the Confidence estimator is minimal even when one
applies the decoder to Confidence at a different time than when a Stimulus or Decision estimator
was trained (Supplementary Figure 12). This suggests that the lack of feature overlap we
observed isn’t trivially due to a delay between Type 1 (face/house) and Type 2 (confidence)
judgments. In other words, the representation for Decision is separable from that of Confidence
not only when the Decision estimator is applied to decode Confidence at its training timepoint; in
fact, these representations are separable in space and time, as it is not the case that the
representation of Decision can predict Confidence at any point in the post-stimulus window™.

Generative Bayesian models

The Decision-Congruent Evidence Bayesian heuristic observer significantly outperformed the
Bayesian ideal observer (Balance rule) in predicting subjects’ Confidence judgments. The
Decision-Congruent rule had an exceedance probability of 72.8%, meaning that in 72.8% of the
simulations it outperformed the Balance rule. The degree to which the Decision-Congruent rule
outperformed the Balance rule interacted with the amount of noise in the simulation, such that
with little noise their performance was about equivalent, but with increasing noise the difference
became more apparent (2 (Confidence rule) x 11 (noise level) repeated measures ANOVA,
results in Supplementary Table 7).

When plotting the difference in CP between the rules across all subjects noise levels, it is clear

that the Decision-Congruent rule demonstrates higher choice probability, especially at
intermediate noise levels, driving the interaction (Supplementary Figure 13).

Frequencies outside 80-120 Hz

Many studies agree that gamma and high-gamma frequency ranges (~30-190 Hz) together
represent a substrate supporting fast, task-relevant processing, including complex cognition,
feature selection, attention, memory, and binding of features or distributed responses, among
many other higher level functions'***3®, Importantly, however, although precursors of attention
and feature binding® and object representation®*' have been linked to gamma band activity
(30-80 Hz), it is power in the high-gamma frequency bands (80-120 Hz) that has been linked to
perception itself* and that appears directly linked to neural firing rates’'°.
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However, broadband activity in the entire gamma-high-gamma frequency range (~30-190 Hz)
has been linked to the BOLD signal in functional neuroimaging (fMRI)'". It has also been
suggested that the gamma range has (30-80 Hz) separate neural origins from high-gamma'®, and
may provide communication channels between cortical areas***. Because the relationship
between high-gamma power and underlying neural activity is known to be complex and depend
on many factors (including anatomical area), to partially alleviate this concern we also re-ran all
decoding analyses presented in the main text utilizing a broader frequency range from 30-190
Hz. To provide an easily-digestible summary comparison of high-gamma versus all
gamma-high-gamma, we created an index of predictive power P of estimator e as

1=1000ms
2., AUC.)

— 1= m:
F:) - ms

1=1000ms
Z A UCL'Inmw (89)

1=0ms

where AUC,(t) is the AUC for estimator e at timepoint ¢ after stimulus onset calculated according
to the ROC analysis described above, and AUC,, .. = 0.5. Estimator performance when using all
frequency bands from 30-190 Hz ([30 35 40 45 50 55 60 70 80 90 100 110 120 130 140 150 160
170 180 190] Hz) qualitatively followed the same trend as when we focused on high gamma,
albeit with slightly poorer decoding performance overall than when focusing on 80-120 Hz

(Supplementary Table 8).

All analyses presented in the main text follow this pattern when conducted on the full 30-190 Hz
spectrum: qualitatively similar but quantitatively weaker results than when focusing on 80-120
Hz. This finding also confirms previous reports of the relevance of high-gamma power to the
computations and representations underlying perception and perceptual processes.

We also considered including lower frequency phase values as Features in the decoding analysis,
as alpha phase has been linked to perception in concert with high-gamma and has been suggested
to coordinate high-gamma activity (e.g.,***’). However, unfortunately because low-frequency
phase analyses were not planned ahead of time, we did not use an LED to precisely monitor the
timing of the actual stimulus onset. Instead, visual stimulus “onset” was monitored from the
computer output, meaning a delay between the stimulus presentation trigger and actual stimulus
presentation was possible. We expect that this was on the order of milliseconds and relatively
constant across trials, and therefore should not affect the interpretation of our findings regarding
contributions of high-gamma power in 200ms time bins or smoothed with a 50ms time window,
as we present here. However, because phase information cannot be temporally smoothed, the
lack of precise stimulus onset monitoring via LED could pose a problem to phase analyses. We

therefore elected to conduct this kind of analysis in future studies.
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Supplementary Figures
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Supplementary Figure 1. Time-frequency spectrograms of electrocorticography data, time-locked
to stimulus onset. (a) Normalized average spectrogram across trials and electrodes. (b)
Representative electrode spectrograms in response to ‘face’ versus ‘house’ stimulus
presentations. Power is most salient in high-gamma frequency bands (80-120 Hz) around
250-400ms after stimulus onset. Note that face- and house-selective electrodes may not match
known functional or anatomical maps. This depiction is for illustrative purposes only; see main
text for more comprehensive discussion of electrode contribution to Decision versus Confidence
decoding.
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Supplementary Figure 2. Two-dimensional signal detection theoretic and Bayesian ideal observer
model space. The abscissa represents Face Evidence and the ordinate represents House Evidence.
Concentric circles represent isometric bivariate Gaussian distributions viewed from above. A
diagonal decision criterion (black line) divides the space, such that an internal decision variable x
for which Face Evidence is higher than House Evidence (below the diagonal) will be categorized
as a ‘face’ by the observer. Confidence criteria are shown in red. Note that criteria are shown for
the signal detection theoretic formulations of the models, but represent the shape of the decision
and confidence contours for the Bayesian observer models as well. (a) According to normative
models, Confidence should be rated on the same internal information as the Decision. The farther
x is from the Decision criterion, the more likely the observer is to have made a correct Decision,
and so the more confident the observer should be. This leads to diagonal Confidence criteria, or
Confidence being rated on the Balance of Evidence. (b) In contrast, the Decision-Congruent
Evidence Bayesian heuristic model judges Confidence according to the magnitude of
Decision-Congruent Evidence, such that the relevant comparison is now whether the evidence on
the current trial better reflects noise or some prototypical example of the chosen stimulus
category. See text for details.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/541562-017-0139 | www.nature.com/nathumbehav

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

16


http://dx.doi.org/10.1038/s41562-017-0139

SUPPLEMENTARY INFORMATION

% choices

Low confidence High confidence
Supplementary Figure 3. Supplementary behavioral results: Face and House response
percentages as a function of high versus low confidence. A 2x2 repeated measures ANOVA
revealed no main effect of Confidence (F(1,5) <.001, p = 1), no main effect of Face vs. House
Decision (F(1,5) =2.528, p =.173), and no interaction between Confidence and Face vs. House
Decision (F(1,5) = 1.885, p =.228).
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Supplementary Figure 4. Motor preparation cannot explain decoding results. Electrodes near
motor cortex carry information about motor preparation only in response-locked analyses (b), not
in stimulus-locked analyses (a), and only in time periods directly leading up to motor execution.
This result shows that motor preparation or execution should not drive the decoding results
presented in the main text.
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Supplementary Figure 5. Mean high gamma power is not different for high versus low
confidence responses when response-locked.
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Supplementary Figure 6. Axial view of Figure 2b (main text).
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Supplementary Figure 7. Subject-by-subject plots of contribution index C, as in Figure 2b (main
text).
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Supplementary Figure 8. Anatomical distribution of top 25% of overlapping Features between
Decision and Confidence representations in the same post-stimulus time bins. Most of the
overlap is in occipital regions. Because Confidence is more distributed than Decision, it is clear
that Confidence calculations rely both on these occipital Features and on other sources of
information (e.g., frontal regions; Figure 2c, main text).
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Supplementary Figure 9. Electrodes significantly responsive to participants’ Decisions may also
carry some information about Decision-Congruent Evidence for confidence. Rows 1-4 show
individual representative ‘face-selective’ and ‘house-selective’ electrodes, and the bottom row
shows the average response for all electrodes demonstrating significant selectivity according to
participants’ Decisions. In electrodes significantly tuned to Decisions, mean log high-gamma
power between high versus low confidence trials differs only when the participant’s Decision is
congruent with the electrode’s tuning preference. For example, ‘face-selective’ electrodes show
differences in high-gamma power primarily when the participant makes a ‘face’ Decision, and
not nearly as much when the participant makes a ‘house’ decision. The opposite is true for
‘house-selective’ electrodes. This response pattern is consistent with the Decision-Congruent
Evidence rule for computing perceptual confidence. Shaded regions (bottom row only) indicate
the standard error of the mean.
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Supplementary Figure 10. Subject-by-subject plots showing choice probability ROC analyses.

choice probability (CP) for Balance is always much higher than for the Decision-Congruent
Evidence rule for Decision, but the two are statistically indistinguishable for Confidence.
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Supplementary Figure 11. Results of the choice probability confirmatory analysis demonstrate

that choice probability results are robust to the particularities of the definition of Evidence
presented in the main text.
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Supplementary Figure 12. Results of temporal generalization analysis to examine potential lag in
predicting from Decision to Confidence. The Stimulus and Decision estimators trained at any
timepoint poorly predicted Confidence at all timepoints, indicating that the poor performance of
the forward model is not due to temporal dissociations in processing, but must be due to actual

differences in representations and computations.
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Supplementary Figure 13. The Decision-Congruent Evidence Bayesian heuristic observer
predicted subjects’ Confidence responses better than the Bayesian ideal observer across noise
levels. (a) Histogram of difference in CP for each rule across all noise levels,
Decision-Congruent-Only minus Balance-Of-Evidence. The Decision-congruent model on
average outperforms the Balance model. (b) The difference in CPs changes as a function of the
internal (neuronal) noise assumed in the observer. Across noise levels except for no noise, CP for
the Decision-Congruent model matches or exceeds CP for the Balance model. Error bars indicate
the standard error of the mean across subjects.
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Supplementary Tables

Patient Hand VCI1 POI WMI PSI Language
1 R 82 97 91 88 English

2 R - - - - Spanish

3 R 134 84 102 86 English

4 R - - - - Farsi

5 R 95 109 108 124 English

6 R - - - - Mandarin

Supplementary Table 1. Patients’ handedness, spoken language, and WAIS results. Prior to
completing the experimental task, subjects with English as a first language were evaluated on the
Weschler Adult Intelligence Scale (WAIS): Verbal Comprehension Index (VCI), Perceptual
Organization Index (POI) Working Memory Index (WMI), and Processing Speed Index (PSI).

Frontal Parietal Temporal Occipital
Patient | Hemisphere # % # % # % # %
1 Left 26 | 28.6% | 17 | 18.7% | 40 | 44.0% 8 8.8%
2 Right 75 | 54.0% | 34 | 245% | 25 | 18.0% 5 3.6%
3 Right 33 1223% | 49 | 33.1% | 49 | 33.1% 17 | 11.5%
4 Bilateral 48 | 32.2% | 36 | 242% | 63 | 42.3% 2 1.3%
5 Bilateral 67 |39.0% | 37 [21.5% | 59 | 343% 9 5.2%
6 Bilateral 70 | 40.0% | 41 [23.4% | 54 | 30.9% 10 5.7%
Average 53.2 | 36.0% | 35.7 | 24.2% | 48.3 | 33.6% | 85 | 6.0%
Supplementary Table 2. Electrode distribution by subject and cortical lobe.
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Decision Confidence
Time window AUC % significant AUC % significant
beginning at subjects subjects
(ms)

0 0.4945 0% 0.4862 0%
50 0.5013 0% 0.5168 0%
100 0.5101 0% 0.5087 0%
150 0.5238 0% 0.5257 0%
200 0.5536 16.67% 0.5327 0%
250 0.6176 50% 0.5595 16.67%
300 0.6490 83.33% 0.6042 16.67%
350 0.6757 66.67% 0.6216 16.67%
400 0.6999 100% 0.6144 16.67%
450 0.6789 66.67% 0.6612 50%
500 0.6775 83.33% 0.6239 33.33%
550 0.6700 83.33% 0.6268 33.33%
600 0.6797 100% 0.6361 16.67%
650 0.6721 100% 0.6654 33.33%
700 0.6726 83.33% 0.6244 33.33%
750 0.6401 50% 0.6574 33.33%
800 0.6157 50% 0.6452 33.33%
850 0.6053 16.67% 0.6138 33.33%
900 0.5885 33.33% 0.5999 0%
950 0.5963 0% 0.6182 0%

Supplementary Table 3. Results of SVM decoding in 50ms timebins as average AUC in each bin
and percentage of subjects reaching significance in each bin. This analysis confirms that
Decision reached significant decodability earlier, and for more subjects, than Confidence.
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Factor F(df) p
Decision Time bin F(4,3480) =41.272 <.001*
Time bin x Lobe F(4,3480) = 7.843 <.001*
Lobe F(3,870) = 7.748 <.001*
Confidence Time bin F(4,3480) = 18.728 <.001*
Time bin x Lobe F(4,3480) = 2.475 .003*
Lobe F(3,870) = 1.896 129

Supplementary Table 4. Results of step-down mixed design ANOVAs within each predictor to
test for neuroanatomical distribution of Decision versus Confidence representations. All effects
are significant, with the exception of the main effect of lobe for Confidence; this indicates that
the neuroanatomical localization of the representation for Decision is specific to certain

neocortical lobes, but the distribution of Confidence is highly distributed.

Factor F(df) p
0-200ms Predictor F(1,870) =.556 456
Predictor x Lobe F(3,870)=1.528 206
Lobe F(3,870) = .419 740
200-400ms Predictor F(1,870) =3.358 .067
Predictor x Lobe F(3,870) = 8.864 <.001*
Lobe F(3,870)=17.010 <.001*
400-600ms Predictor F(1,870) = 15.826 <.001*
Predictor x Lobe F(3,870) = 1.682 .169
Lobe F(3,870) = 4.640 .003*
600-800ms Predictor F(1,870)=2.871 .091
Predictor x Lobe F(3,870) =5.165 .002*
Lobe F(3,870) =2.000 113
800-1000ms Predictor F(1,870) =21.880 <.001*
Predictor x Lobe F(3,870)=2.389 .067
Lobe F(3,870) =3.150 .024

Supplementary Table 5. Results of step-down mixed design ANOVAs within each post-stimulus
time bin, again to check for differences between predictors. No differences are apparent in the
0-200ms time bin, consistent with decoding results. However, beginning in the 200-400ms bin, a
significant main effect of lobe and an interaction between lobe and predictor appear, with a
trending main effect of predictor. This pattern is relatively consistent through the remaining three
time bins.
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Mean (+ SD) t(5) p
Decision Balance 0.8940 £ 0.050 | 43.630 <.001
Decision-Congruent | 0.6560 = 0.066 | 24.058 <.001
Confidence Balance 0.7085+0.175 |9.922 <.001
Decision-Congruent | 0.6721 +0.137 | 11.987 <.001

Supplementary Table 6. Planned post-hoc t-tests for Choice Probabilities (CPs) to test whether
they are significantly above chance (CP = 0.5). All results surpass the criterion for significance
even after Bonferroni-Holm correction for multiple comparisons®.

F p
Rule: Balance or Decision-Congruent F(1,5)=1.952 221
Noise F(10,50)=11.613 <.001
Interaction: Rule x noise F(10,50) = 3.399 .002

Supplementary Table 7. Results of 2 x 11 repeated measures ANOVA testing the predictive
power of two generative models of Confidence: Bayesian ideal observer (Balance-Of-Evidence)
and Decision-Congruent Evidence Bayesian heuristic observer.

P (80-120 Hz) P (30-190 Hz) P (80-120 Hz) / P (30-190 Hz)
Decision 1.2333 + 0.0634 1.2168 + 0.0610 1.0135
Confidence | 1.1942 +0.1296 1.1850 + 0.1255 1.0078

Supplementary Table 8. Predictive power comparisons between high-gamma and all
gamma-high-gamma frequencies.
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Supplementary Notes

One potential concern in the analyses presented here relates to the limited spatial resolution of
ECoG in clinical patients: electrodes are implanted in heterogeneous locations of clinical
relevance, so spatial coverage is both relatively sparse and varied across subjects in comparison
to whole-brain imaging methods. Indeed, a common approach is to specifically investigate
regions of interest known to be involved in a particular computation, for example posterior
parietal cortex for dot-motion discrimination perceptual decisions. Likewise, areas presumed to
be involved in confidence computations (e.g., pulvinar, orbitofrontal cortex, intraparietal sulcus,
etc.) are often targeted in whole-brain analyses. Unfortunately, the use of ECoG in human
patients undergoing surgery for reasons unrelated to the present research precludes specific
targeting of these regions of interest in the present investigation, as few or no electrodes reached
these areas of interest.

However, concluding that Decisions and Confidence judgments rely on spatiotemporally
dissociable computations requires only that we demonstrate any difference, not that we are
committed to claiming this difference is ubiquitous across all brain areas. Although there are
shared Features between Decision to Confidence representations (clustered primarily in occipital
regions), the degree of Feature overlap is small. In this way, ECoG not only provides evidence
that Decision and Confidence are dissociable, but also provides key information about the
neuroanatomical loci of their similarities and differences. That we have quantified and localized
these dissociations suggests that the difference between Type 1 (Decision) and Type 2
(Confidence) judgments is robust despite the limitations of ECoG spatial coverage.

Indeed, the results of all analyses demonstrate that (a) there is a difference in how Decisions and
Confidence are computed from available evidence (e.g. the significant ANOVA interaction in the
choice probability analyses), (b) with a forward model we can estimate the trial-by-trial accuracy
of a subject’s Decisions and Accuracy but not his/her Confidence judgments (suggesting that
Confidence relies on something different from simply a readout of trial-by-trial Accuracy), and
(c) the Decision-Congruent model fits subjects’ data better than the Balance model in the
Bayesian observer analysis. Although the spatial coverage may not allow us to sample every
neuron, the evidence available indicates that the computations leading to Decisions and
Confidence judgments are indeed dissimilar in a way that is consistent across three different
analysis approaches. More studies should be done using neuroimaging methods with more
comprehensive spatial coverage and better resolution to confirm the results presented here.
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