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Supplementary   Methods 
 
Behavioral   methods 
 
We studied six patients (5 females, 1 male, age range 1946, all right handed) at the                
Comprehensive Epilepsy Center of New York University who had surgically implanted           
intracranial electrodes for monitoring for potential resection due to epilepsy (Supplementary           
Table 1). The electrodes were implanted on the cortical surface for clinical reasons independent              
of this research. Sample size was thus determined by availability of patients and data acquisition               
particulars. This study was approved by the New York University Medical Center ethics board,              
and   all   patients   gave   written   consent   to   participate. 
 
In each trial of the behavioral task, 2s of a fixation point were presented, after which the fixation                  
point disappeared and either a face or a house was presented for 16ms. After that, the screen                 
went blank until the subject made a response or 3.5s had elapsed. Responses were made via 4                 
keys, representing each combination of face/house and high/low confidence. Responses were           
made with one hand (Figure 1a, main text). All stimuli were presented on a portable laptop with                 
gammacorrected screen luminance, and responses were collected via the keyboard via button            
presses made with one hand. All stimuli were converted to grayscale and matched for size,               
luminance, contrast, and spectral power. They were then windowed with a blurred oval mask to               
minimize   border   effects,   and   covered   with   randomly   generated   noise   pixels   at   runtime. 
 
Subjects first underwent a psychophysics threshold estimation procedure to determine stimuli           
contrasts that would titrate objective performance at about 75% correct split across two contrast              
levels. Stimulus contrasts were titrated during a thresholding procedure such that subjects would             
perform approximately 75% correct in the face/house discrimination task. Two          
randomlyinterleaved staircases presented the stimuli while modulating the contrasts to          
determine each individual patients’ psychometric function. One staircase was a 3down1up and            
the other was a 2down1up, which were expected to converge on 79% and 71% correct,               
respectively 1,2 . The staircases started at 60% and 40% contrast, and changed by 6% until 4               
reversals occurred, after which they changed by 1%. Thresholding continued until the patients             
had made 8 reversals in each staircase, at which point the averages of the final 8 inflection points                  
for each staircase were chosen as fixed stimulus contrasts for the main experiment. During the               
subsequent trials, stimuli were presented at one of the two staircasedetermined contrasts in a              
counterbalanced   manner.  
 
Subjects completed an average of 415.17±183.93 face/house discrimination trials each (because           
of the clinical setting in which these studies were conducted, it is difficult to control the number                 
of   trials   completed   by   each   subject). 
 
Electrocorticography   acquisition   and   preprocessing 
 
Usable signal was recorded from 874 electrodes across all six subjects ( electrodes per           45.7  μ = 1    
subject). Three of six subjects had electrodes in one hemisphere only, while the other three had                
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bilaterally implanted electrodes. Subjects demonstrated similarly distributed electrode spread         
(Supplementary Table 2). MNI coordinates for all electrodes for all subjects are included as a               
supplementary   spreadsheet,   and   data   is   available   upon   request.  
 
ECoG was measured using a custombuilt system based on the opensource NSpike acquisition             
system, with up to 256 simultaneous channels at a 30 kHz, 16bit sampling rate. Builtin filters                
highpass filtered at .6 Hz, and lowpass filtered at 10 kHz. Signals were subsequently              
downsampled and converted to 500 Hz, 32bit floating data prior to preprocessing. After             
downsampling to 500 Hz, individual trials and channels were manually inspected for artifacts             
and epileptic activity and removed if necessary as routine procedure at the Schwartz Health Care               
Center (HCC) of the New York University Medical Center (NYUMC) and the NYUMC             
Comprehensive Epilepsy Center, and again by the present research team. Thus, epileptic            
electrodes were not included in the analysis. Line noise and harmonics were removed by notch               
filters at 60, 120 and 180 Hz. Spectral power was computed via a shorttime Fourier transform                
using the multitaper method 3 in MATLAB R2013a (MathWorks; Natuck, MA). We timelocked            
the activity for each trial to stimulus onset. The spectrum was normalized using singletrial              
baseline normalization using the period between 500 and 1500ms before stimulus onset as             
baseline 4 : for each frequencytime point in each trial, the mean baseline power for that frequency               
band was subtracted from the raw power, and the difference was then divided by the standard                
deviation of the baseline power in that frequency across trials. The log was taken to make the                 
power distribution approximately normal. Epochs for decoding were defined as the time period             
from   250ms   before   stimulus   onset   to   1000ms   after   stimulus   onset. 
 
All   electrodes’   MNI   coordinates   are   available   as   a   supplementary   dataset. 
 
Support   vector   machine   decoding 
 
We explored the extent to which two trialbytrial behavioral factors  y  could be classified by               
support vector machine (SVM) estimators (see next section): (1) the perceptual Decision made             
by the patient (face/house); and (2) the Confidence rating given by the patient (high/low). To               
define Evidence for the choice probability analyses (see main text Methods), we also trained an               
additional   estimator   based   on   the   stimulus   presented   on   each   trial. 
 
Support vector machine estimators.  Linear multivariate estimators were defined to predict a            
vector y of trialbytrial categorical labels (e.g., face vs. house) or ordinal labels (e.g., high vs.                
low confidence) from a matrix of ‘Features’: trialbytrial ECoG power in the highgamma bands              
([80 90 100 110 120 Hz], shorttime multitaper method 3 , 15 Hz halfbandwidth, 100 ms              
windows, 10 ms steps) at each sampling timepoint ( X , with dimensions  n trials ×  ( n electrodes ×               
n frequencies ×  1  timepoint )), i.e. ‘electrodefrequencytimepoints’. These timepoints were defined on           
the peristimulus window from 250ms (before stimulus onset) to 1000ms after stimulus onset.             
We focused on highgamma because this frequency range has demonstrated connection to            
perceptual processes 5–8 , neural firing rates 9–16 , and relationship to the BOLD signal in fMRI 17–20 .             
Importantly, this range was observed to be most salient in the stimuluslocked spectrograms             
(Supplementary Figure 1). Below we also show that including lower frequency ranges only             
diluted the decodability of Decision and Confidence behavioral factors, but did not change the              
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qualitative pattern of results (see Supplementary Notes). Because of these considerations, and            
that SVM decoding can suffer from overfitting if the number of Features vastly outnumbers the               
number of trials for training and testing (as with all data fitting methods 21 ), we focus on the most                  
salient frequencies in order to minimize the possibility of overfitting by reducing the Feature              
space,   while   also   minimizing   computational   demands. 
 
Crossvalidation and classifier performance.  For timeseries analyses, each estimator was fitted           
to each subject individually at each time sample. That is, for each of the behavioral factors                
described above, we fitted  n time estimators on an X matrix ( n trials  ×  ( n electrodes × n frequencies ×  1                 
timepoint )) to predict a vector  y.  We used 5fold stratified crossvalidated L2regularized L2loss             
linear SVM classification (dual) implemented through the  liblinear  package 22 in  libsvm 23 : each            
iteration generated predictions on 1/5 th of the data (test set,  X test ) after being fitted to the other                 
4/5 th of trials (training set,  X train ) while maximizing homogeneity between training and test sets              
via stratification. All SVM parameters were set to default values as provided in the  liblinear               
package (e.g., soft margin parameter C = 1); continuous decision value outputs (coding the              
strength of categorization results) were taken as trialbytrial estimates of  ŷ . The performance of              
the classifier was assessed via comparison of  y test to  ŷ test via an empirical Receiver Operating               
Characteristic (ROC) analysis 24 taken across all test trials at each fold, which plots the percent of                
hits (true positives) against false alarms (false positives) as a function of varying criterion values               
to classify the data into two categories. (The farther from the decision boundary a given decision                
value  ŷ is, the more likely it ought to be to reflect a correct classification 21 .) When averaged                 
across folds, this analysis resulted in an Area Under the Curve (AUC) score for each estimator,                
ranging from 0 to 1 with chance classification performance being defined at 0.5. We refer to                
AUC as ‘decoding accuracy’ or ‘classification accuracy’ in the main narrative for ease of              
interpretation. AUC was defined as being above chance for each subject when empirical pvalues              
for the average AUC in 50ms bins, found via empirical permutation tests (100 permutations at               
each fold), were below p = 0.05. To reveal global trends as a function of time in visualization                  
(Figure 2, main text), AUC scores were smoothed using a 5point moving average (window size               
50ms). All analyses were completed through customwritten software in MATLAB R2013a           
(MathWorks;   Natuck,   MA)   and   SPSS   Statistics   22.0   (IBM). 
 
To quantitatively examine the decoding patterns for the two estimators, we binned the AUC for               
each estimator as a function of time into poststimulus time bins of 50ms. We calculated the                
mean AUC for each estimator in each of these bins, and conducted permutation tests (100               
permutations in each fold) to identify an empirical pvalue, to evaluate when each estimator              
achieved   abovechance   performance   across   subjects.  
 
Neuroanatomical   localization   of   representations 
 
We used a transformation of the modified Fscores 25,26 for estimators to define electrodes’             
contribution to decoding. Given training instances  x i ,  i = 1, … ,  l , the Fscore of the  j th Feature                   
for   estimator    e    is   defined   as: 
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where  n + and  n  are the number of positive and negative instances, respectively; , ,            x    j  xj

(+)  xj
( )  

are the average of the  j th Feature of the whole, positivelabeled, and negativelabeled data sets;               
and / is the  j th Feature of the  i th positive/negative instance. Following previous work  25 , xi,j

(+) xi,j
( )               

the numerator denotes the interclass variance, while the denominator is the sum of the variance               
within each class. A larger Fscore indicates that the Feature is more discriminative 26 . Note that               
the modified Fscore is calculated directly from the highgamma power in each            
electrodefrequencytimepoint and is therefore independent of any assumptions made during          
SVM   estimator   training. 
 
Because these modified Fscores are approximately exponentially distributed, to define an           
electrode’s contribution to an estimator’s predictive capacity, we first took the mean log modified              
Fscore for each electrodefrequency Feature at each timepoint from 0 to 1000ms after stimulus              
onset across frequency bands. We then zscored the results across frequency bands and             
timepoints   to   create   a   standardized    contribution   index   C    such   that 
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where is the contribution to estimator  e of electrode  E at time  t ,  f  indicates the (E, )Ce t                 
frequency band in the 80120 Hz range, | f*| indicates the cardinality of the Feature bands to be                 
averaged across (in our case, 80120 Hz in bands of 10 Hz gives five frequency bands, so in all                   
cases | f* | = 5), refers to the modified F score (Equation S1) of electrodefrequency     (j, )F e t            
Features  j at timepoint  t (i.e., only electrodefrequencies at timepoint  t are taken as contribution               
at that timepoint), and refers to the standard zscore transformation across all modified    (∙)  z           
Fscores for all electrodefrequencytimepoint Features  j for that estimator. By taking the            
standard zscore transformation, each Feature’s contribution is normalized such that we examine            
the  relative contribution of each Feature to an estimator’s decodability, to the extent the estimator               
is actually decodable  that is, regardless of the magnitude or significance of the decodability               
itself. We did this separately for Decision and Confidence, and plotted each electrode’s average              
C value in each lobe as a function of time after stimulus onset (Figure 2b, main text) and binned                   
in 200ms time bins to facilitate further statistics and interpretation. All electrodes’ MNI             
coordinates   are   available   as   a   supplementary   dataset. 
 
We assigned each electrode as belonging to one of the four neocortical lobes based on its MNI                 
coordinates, and plotted the average contribution index  C within each lobe as a function of time                
after stimulus onset (Figure 2c, main text). To quantitatively test for differences in the spatial               
representation and timecourse for each predictor, we ran a mixed design ANOVA with ‘between’              
factor lobe (4: frontal, parietal, temporal, occipital) and ‘within’ factors predictor (2: Decision,             
Confidence) and coarser time bins than used in the significance testing (5: 0200, 200400,              
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400600, 600800, 8001000ms) on electrodes’ contribution index  C values across all subjects.            
We opted to use coarser time bins to reveal global trends in neuroanatomical localization, as an                
ANOVA on the 50ms bins used in the significance testing would reveal uninterpretable, complex              
interactions.  
 
Generative   Bayesian   models 
 
Details of both the Bayesian ideal observer model 27 and the DecisionCongruent Evidence            
Bayesian heuristic observer model 28 have previously been described elsewhere. All simulations           
were completed through customwritten software in MATLAB R2013a (MathWorks; Natuck,          
MA). 
 
Twodimensional framework.  In the onedimensional forward model described in the main text            
methods, the decision value  x by definition reflects a Balance of Evidence for the two stimulus                
alternatives: the more  x indicates Evidence favoring ‘face’, the less it favors ‘house’ and vice               
versa. To independently evaluate the different contributions of DecisionCongruent and          
DecisionIncongruent evidence with respect to multiple possible computation rules for          
Confidence, it is necessary to rely on a twodimensional representation of the decision space to               
decompose  x into independent estimates of Face Evidence and House Evidence 27–29           
(Supplementary   Figure   2). 
 
Bayesian ideal observer.  The Bayesian ideal observer makes both Decisions and Confidence            
judgments according to the same computations. Following previous work 27 , we assume each            
generating category  C is dependent on the evidence strength  s favoring one or the other stimulus                
category (face/house), and can be represented as a bivariate Gaussian distribution such that  C s,Face              
~ N ([ s , 0], ) for a ‘Face’ trial and  C s,House ~ N ([0,  s ], ) for a ‘House’ trial. In its most basic                      
formulation, we define  = I, where I is the 2x2 identity matrix. (Note: because of the scale of                   
Evidence as it is defined, we scale  so that the noise does not overwhelm the samples such that                   
*   =   0.01×). 
 
Because the absolute evidence level is of course unknown to the observer, the face/house              
Decision is made by marginalizing over possible evidence levels to produce the posterior             
probability estimate of the trial being a Face or a House trial 30 . Thus the joint probability of each                  
trial   type   and   evidence   level   is   estimated   through   Bayes’   rule, 
 

(C, |x)p s = p(x)
p(x|C,s)p(C,s) (S3) 

 
and then the secondary variable of evidence strength  s is integrated out, leaving estimation of the                
posterior   probability   of   each   face/house   category   via   the   marginal   distribution 
 

(C |x) (C, |x) dsp =∫
 

 
p s (S4) 

In the simplest form, both face/house categories have equal prior probability, and so the observer               
makes   its   Decision   via 
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rgmax  p(C |x)  Cchosen = a i i (S5) 

 
Finally,   because   confidence   is   judged   simply   as   the   probability   of   being   correct,   we   define 
 

onf idence  p(correct)  p(C |x)  c =   =   chosen (S6) 
 
DecisionCongruent Evidence Bayesian heuristic observer.  Rather than calculating Confidence         
in a Decision based on the Balance of Evidence both in favor of the selected choice and related                  
to the unselected choice(s), the DecisionCongruent Evidence Bayesian heuristic model instead           
discards evidence favoring the unselected choice (DecisionIncongruent Evidence), and to          
compares the strength of evidence for the selected choice both to a prototype along the selected                
dimension   and   to   the   noise   distribution: 
 

onf idence  p(C |x)   c =   ˆ
chosen = p(x|C )p(C )ˆ

chosen
ˆ

chosen

p(x|C )p(C ) + p(x|N )p(N )ˆ
chosen

ˆ
chosen

(S7) 

 
with  N representing the noise, or nothingness distribution and representing the prototype.         Ĉ chosen     
This strategy corresponds to a DecisionCongruent Evidence rule, i.e. that the only relevant             
information in judging Confidence is the magnitude of evidence favoring the Decision that was              
made. Note that previous formulations of this model assume that the DecisionIncongruent            
Evidence is explicitly discarded and the internal evidence remapped, e.g. that if ‘Face’ is              
selected, the evidence to be evaluated is  x* = [ x (1), 0]; however, this explicit discarding does not                 
change   the   behavior   of   the   model   from   the   current   formulation. 
 
Model evaluation and comparison.  Rather than generate the samples  x as would be typical in a                
Monte Carlo simulation of a generative model, we directly evaluated the Face and House              
Evidence samples defined from the SVM feature weights as in the choice probability analyses              
(Methods: Choice probability analysis, Equations 1 & 2, main text). Each trialbytrial sample,             
for each subject, is therefore a twodimensional point, i.e.  x = [Evidence Face , Evidence House ].             
Although the Evidence is defined according to the SVM estimator trained on the presented              
stimulus, subjects were not at 100% accuracy; this means there is some internal noise in the                
system that may be attributable to neuronal factors in addition to the decoding noise, 𝛼 decoding ,               
discussed in the main text methods. This noise is not directly estimable, because decoding              
accuracy did not reach behavioral accuracy, and so the decoding noise overwhelms any internal              
noise.   Therefore,   we   consider   another   source   of   noise,   such   that    x*    =    x    +   𝜀,   with   𝜀   ~   N(0,). 
 
Each of the abovedescribed models makes a decision about each noisecorrupted sample            
according to Equations S3S5, and then rates confidence according to its own rule (Equation S6               
or S7). Because we cannot explicitly estimate internal neural noise, for each model we iteratively               
examined a range of noise levels, varying from  of 0 to 0.01 in steps of .001 (note the scale of                     
the Evidence is very small, such that maximal Evidence for most subjects is on the order of 0.1).                  
Because the number of trials completed by each subject is small, we ran each simulation 1000                
times with different random seeds on each run. This produced a total of 22,000 sets of                
trialbytrial   Confidence   predictions   (2   models   x   11   noise   levels   x   1000   runs)   for   each   subject. 
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We used standard ROC choice probability (CP) analysis 24 as above to quantitatively evaluate the              
models’ predictions by calculating their choice probabilities: we compared the predicted           
Confidence ratings for each subject, for each of the 22,000 simulation sets, to the empirical               
Confidence ratings produced by the subject on a trialbytrial basis by computing the area under               
the   curves   (AUC)   as   a   measure   of   each   model’s   performance,   i.e.   its   CP. 
 
To evaluate whether the DecisionCongruentOnly rule for computing Confidence is a better            
predictor of subjects’ Confidence behavior than the BalanceOfEvidence rule, we conducted a 2             
(Confidence model: Balance vs. DecisionCongruent) x 11 (noise level) repeatedmeasures          
ANOVA on the mean CP for each model at each noise level for each subject. We also calculated                  
the average difference between CP DecisionCongruent and CP Balance across subjects at each noise level;             
if the two rules for computing Confidence are truly equivalent, this difference should not deviate               
from 0 at any noise level. Finally, we calculated the exceedance probability of one model being                
more likely than the other model across all 33,000 simulation runs and all six subjects. The                
exceedance probability is particularly intuitive as all exceedance probabilities sum to one over             
any   number   of   tested   models.  
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Supplementary   Results 
 
Behavioral   results 
 
Additional   behavioral   results   are   presented   in   Supplementary   Figure   3. 
 
Decoding   results 
 
Numbers supporting the graphical presentation in Figure 2 (main text) are presented in             
Supplementary   Table   3. 
 
Motor   preparation 
 
It is important to note that decodability for all factors reached abovechance levels well before               
any movement onset (mean RT = 1136ms). Because finger movement preparation can typically             
be decoded only up to 200ms before movement onset with ECoG 31 , and because responses via               
four unique buttonpress combinations were executed with one hand, this result rules out the              
possibility that decoding is based on movement preparation or execution and not internal             
representations   of   stimulus   properties   or   decisional   calculations   (see   also   next   section). 
 
However, to comprehensively rule out the possibility of motor preparation driving our decoding             
results, we performed a responselocked analysis. We lined up trials by reaction time rather than               
stimulus onset and calculated the pairwise Contribution Index (see above, Equation S2) for each              
button, i.e. each finger, compared to the others. We then examined the degree to which               
electrodes in or adjacent to primary motor cortex (based on MNI coordinates) for each subject               
would contribute to decoding this actual motor movement as opposed to the Decisions             
themselves in the 500ms window leading up to the motor movement itself, marked by the               
reaction time on each trial. We compared this to how these electrodes behaved in the               
stimuluslocked   analysis   (main   text   Results). 
 
This analysis revealed that electrodes near the motor cortex did indeed carry information about              
which  finger was used to press a button when the information was lined up to the motor                 
movement, as shown by the increasing trend of the Contribution Index as the reaction time               
approaches (Supplementary Figure 4b). However, these electrodes did  not carry information           
about the Decision when the trials were locked to motor movements rather than stimulus onset               
(Supplementary Figure 4b): the Contribution Index for these electrodes was flat across the             
examined time period leading up to motor movement (button press), suggesting that Decision             
information is not available in motor planning or execution areas when the information             
accumulation stage is ‘scrambled’ due to changing the trialbytrial alignment from           
stimuluslocked to responselocked. This dissociation is in stark contrast to the practically null             
and certainly not increasing contribution of these units to decoding either Decisions or motor              
movements when the analysis was stimuluslocked (as in the main results) (Supplementary            
Figure 4a). This result demonstrates that motor preparation and execution does not contribute to              
decoding of the Decision. We also checked to ensure that high gamma power did not differ                

 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-017-0139 | www.nature.com/nathumbehav 9

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-017-0139


between high or low confidence trials when trials were responselocked (Supplementary Figure            
5). 
 
Neuroanatomical   localization   of   representations 
 
An axial view and subjectbysubject plots of the Contribution Index (Figure 2b, main text) are               
presented   in   Supplementary   Figures   6   and   7. 
 
The mixed design ANOVA with ‘between’ factor lobe (4: frontal, parietal, temporal, occipital)             
and ‘within’ factors predictor (2: Decision, Confidence) and coarser time bins than used in the               
significance testing (5: 0200, 200400, 400600, 600800, 8001000ms) revealed main effects           
for predictor (F(2,1870) = 1.758, p < .001), time bin (F(4,3480) = 44.723, p < .001), and lobe                  
(F(1,870) = 4.668, p = .003), as well as an interaction between the two ‘within’ factors of                 
predictor and time bin (F(8,3480) = 6.156, p < .001). Crucially, the ‘between’ factor of lobe                
interacted with all ‘within’ factors: predictor x lobe F(6,870) = 6.875, p < .001; time bin x lobe                  
F(12,3480)   =   6.972,   p   <   .001;   predictor   x   time   bin   x   lobe   F(12,3480)   =   2.294,   p   =   .007. 
 
To explore these interactions, we conducted a series of stepdown ANOVAs: two stepdown 4              
(lobe) x 5 (time bin) mixed design ANOVAs, one for each predictor; and five stepdown 4 (lobe)                 
x   2   (predictor)   mixed   design   ANOVAS,   one   for   each   time   bin   (Supplementary   Tables   4   &   5). 
 
Representational   overlap 
 
To ensure that the observed dissimilarity in representations was not due simply to noise, we               
directly examined the neuranatomical overlap of the Decision and Confidence representations.           
We ranked the electrodefrequencytimepoint Features according to their informativeness in          
decoding each factor independently (Equation S1) 25,26 , and selected a subset (the top 25%) of              
these Features for closer inspection. If Confidence shares the Decision representation, we should             
expect a large proportion of these most informative Features to be the same between Decision               
and   Confidence   even   in   the   presence   of   significant   noise.  
 
32.41% of the top 25% of Features were shared were shared between representations of Decision               
and Confidence. We assessed the anatomical locus of the overlapping Features by calculating the              
percentage of overlapping Features in each neocortical lobe at each poststimulus timepoint (note:             
there are five Features per electrode at each timepoint, corresponding to power in 80, 90, 100,                
110,   and   120   Hz   frequencies).  
 
This analysis revealed a strong overlap in occipital electrodes, especially at 200500ms post             
stimulus onset (Supplementary Figure 8). Overlap was second strongest in temporal regions in             
the same time period, and rose in parietal regions towards the end of the poststimulus response                
window.   Overlap   was   smallest   in   frontal   regions   across   the   whole   poststimulus   time   period.  
 
It is worth noting that although nonzero modified Fscores for a given channel or frequency               
might indicate an area that is doing something other than the taskrelevant processing, we might               
hope that such taskirrelevant processes would be at least somewhat common across both             
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Decisions and Confidence judgments  e.g., pressing keys, remaining focused on the screen,             
being bored with the task, mind wandering, eye blinking, heartbeat, etc.  and so if anything                
would artificially  inflate the number of shared features between Decisions and Confidence            
judgments   rather   than   deflate   their   feature   overlap.  
 
As an additional test of representational overlap, we also examined whether electrodes that             
demonstrate stimulus selectivity (i.e., face or housetuned electrodes) might also carry           
meaningful information about confidence in a tuningspecific manner. For this analysis we            
defined electrodes as significantly selective to ‘face’ or ‘house’ Decisions via onetailed ttests of              
the average highgamma power in the window between 0ms and 500ms after stimulus onset,              
based on the observation that the most salient response happens before 500ms postonset             
(Supplementary Figure 1). If this average power was significantly greater (at p < .05) for trials in                 
which the participant made a ‘face’ Decision over when the participant made a ‘house’ Decision,               
the electrode was designated as ‘faceselective’; we used the same approach to define             
‘houseselective’   electrodes. 
 
For electrodes that demonstrated significant selectivity for face or house Decisions, we next             
examined the average response in trials where the participant responded ‘high confidence’ versus             
‘low confidence’ as a function of whether the participant’s Decision on that trial was congruent               
with the electrode’s tuning. For example, we examined whether for “faceselective” electrodes,            
average highgamma power was more different in ‘high confidence’ versus ‘low confidence’            
trials   when   the   participant   responded   ‘face’   than   when   the   participant   responded   ‘house’. 
 
This analysis revealed that despite the largely separable representations for Decisions and            
Confidence (main text Figure 2), there are also individual electrodes that carry some information              
about Confidence even though they were also identified as significantly responsive to            
participants’ Decisions. Importantly, as we hypothesized these electrodes’ activity reflected          
Confidence in a manner consistent with the DecisionCongruent Evidence rule: for example,            
when a ‘faceselective’ electrode carries information about Confidence, it appears to be primarily             
on trials when the participant made a ‘face’ Decision in a manner congruent with the electrode’s                
tuning (Supplementary Figure 9). In contrast, when the subject makes a Decision that is              
incongruent with the electrode’s selectivity (e.g., ‘house’), there is a much smaller difference             
between   the   highgamma   power   in   high   versus   low   confidence   trials.  
 
To confirm this visual interpretation, we averaged the difference in activity for high versus low               
confidence trials as a function of choice congruency, and compared their means across the entire               
time window with a twosample ttest. This revealed that, confirming visual inspection, the             
average difference between high versus low confidence activity was significantly higher for            
trials in which the participant made a Decision congruent with the electrode’s tuning preference              
(t(114) = 4.133, p < .001), lending further credence to the DecisionCongruent Evidence rule for               
computing   confidence. 
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Choice   probability   analysis 
 
Subjectbysubject plots of the choice probability ROC curves are presented in Supplementary            
Figure 10. Planned  posthoc ttests for Choice Probabilities revealed that all surpassed chance             
level   (Supplementary   Table   6). 
 
To ensure that results from this analysis are not overly dependent on our particular definition of                
Evidence, we performed a confirmatory analysis. In this confirmation, we defined electrodes as             
being ‘face’ or ‘house’ selective via a set of Bonferronicorrected ttests comparing highgamma             
power at each poststimulus timepoint against the average highgamma power during the            
baseline (preonset) period. This allowed us to identify poststimulus timepoints at which ‘face’             
or ‘house’ vs. baseline highgamma power was significant, which we interpreted as a set of               
electrodefrequencytimepoints that were significantly responsive to faces versus houses         
independently of one another. We then removed all electrodefrequencytimepoints that were           
common to both faces and houses (which additionally addresses concerns about taskirrelevant            
processing). Finally, we used the remaining electrodefrequencytimepoints to define Evidence          
similarly to how it is defined in the main text, but with an important modification that avoids                 
reliance   on   SVM   feature   weights.  
 
This   new   definition   of   Evidence   thus   modifies   Equation   2   in   the   main   text,   which   reads 
 

(n, , )f s t i = w |  |   i
 |  
|   gn,t,i I i (main   text   2) 

 
to   read 

(n, , )f s t i = gn,t,i
1
N ∑

N

j=1
gn,t,i (S8) 

 
By this simpler definition, which does not depend on the sign of the SVM feature weights or the                  
sign of the signal for each feature, we obtained the same results as the main analysis: the                 
BalanceofEvidence rule predicted Decisions much better than the DecisionCongruentOnly         
rule (t(5) = 12.31, p < .001) but for Confidence the Choice Probabilities were no different                
between   the   two   computational   rules   (t(5)   =   1.60,   p   =   .17)   (Supplementary   Figure   11). 
 
Lag   in   predicting   from   Decision   to   Confidence?  
 
To   address   the   stability   of   the   representations   of   the   Stimulus,   Decision,   and   Confidence,   we 
performed   temporal   generalization   analyses 32    both   within   each   estimator   and   crosspredicting 
from   Stimulus   and   Decision   to   Confidence.      This   analysis   helps   explore   whether   the   failure   in 
crosspredicting   was   due   to   temporal   lag   between   calculations   of   Type   1   (Decision)   and   Type   2 
(Confidence)   judgments.  
 
To quantify the effect of potential temporal lag, the Decision estimator fitted at each timepoint  t                
as above was tested on its ability to decode Confidence at all other timepoints  t’  for each trial                  
after taking the absolute value of the Decision SVM estimator decision values,  ŷ , as above. This                
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type of analysis results in a square generalizationacrosstime (GAT) matrix, where the yaxis is              
the time at which the estimator was fitted, and the xaxis is the time at which the estimator was                   
evaluated 32,33 . Temporal generalization analyses were performed on the same time peristimulus           
window as the previous analyses: 250ms to 1000ms. Note that when crosspredicting from             
either Stimulus or Decision to Confidence, the absolute value of the SVM decision values  ŷ was                
taken according to standard signal detection theoretic approaches  see also the Signal Detection              
Theoretic   Forward   Model   section   in   the   main   text   Methods. 
 
All of these temporal generalization analyses suggested that while Decision shares many features             
with Stimulus  mostly localized to occipital areas, as presented in the present version of the                
manuscript  the overlap from these to the Confidence estimator is minimal even when one               
applies the decoder to Confidence at a different time than when a Stimulus or Decision estimator                
was trained (Supplementary Figure 12). This suggests that the lack of feature overlap we              
observed isn’t trivially due to a delay between Type 1 (face/house) and Type 2 (confidence)               
judgments. In other words, the representation for Decision is separable from that of Confidence              
not only when the Decision estimator is applied to decode Confidence at its training timepoint; in                
fact, these representations are separable in space and time, as it is not the case that the                 
representation   of   Decision   can   predict   Confidence   at    any    point   in   the   poststimulus   window 32 . 
 
Generative   Bayesian   models 
 
The DecisionCongruent Evidence Bayesian heuristic observer significantly outperformed the         
Bayesian ideal observer (Balance rule) in predicting subjects’ Confidence judgments. The           
DecisionCongruent rule had an exceedance probability of 72.8%, meaning that in 72.8% of the              
simulations it outperformed the Balance rule. The degree to which the DecisionCongruent rule             
outperformed the Balance rule interacted with the amount of noise in the simulation, such that               
with little noise their performance was about equivalent, but with increasing noise the difference              
became more apparent (2 (Confidence rule) x 11 (noise level) repeated measures ANOVA,             
results   in   Supplementary   Table   7). 
 
When plotting the difference in CP between the rules across all subjects noise levels, it is clear                 
that the DecisionCongruent rule demonstrates higher choice probability, especially at          
intermediate   noise   levels,   driving   the   interaction   (Supplementary   Figure   13).  
 
Frequencies   outside   80120   Hz 
 
Many studies agree that gamma and highgamma frequency ranges (~30190 Hz) together            
represent a substrate supporting fast, taskrelevant processing, including complex cognition,          
feature selection, attention, memory, and binding of features or distributed responses, among            
many other higher level functions 15,34–38 . Importantly, however, although precursors of attention           
and feature binding 39 and object representation 40,41 have been linked to gamma band activity             
(3080 Hz), it is power in the highgamma frequency bands (80120 Hz) that has been linked to                 
perception   itself 5–8    and   that   appears   directly   linked   to   neural   firing   rates 9–16 . 
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However, broadband activity in the entire gammahighgamma frequency range (~30190 Hz)           
has been linked to the BOLD signal in functional neuroimaging (fMRI) 17–20 . It has also been               
suggested that the gamma range has (3080 Hz) separate neural origins from highgamma 15 , and              
may provide communication channels between cortical areas 42,43 . Because the relationship          
between highgamma power and underlying neural activity is known to be complex and depend              
on many factors (including anatomical area), to partially alleviate this concern we also reran all               
decoding analyses presented in the main text utilizing a broader frequency range from 30190              
Hz. To provide an easilydigestible summary comparison of highgamma versus all           
gammahighgamma,   we   created   an   index   of   predictive   power    P    of   estimator    e    as 
  

                                                                                                                                                                                              (S9) 
  
where  AUC e (t) is the AUC for estimator  e at timepoint  t  after stimulus onset calculated according                
to the ROC analysis described above, and  AUC chance = 0.5. Estimator performance when using all               
frequency bands from 30190 Hz ([30 35 40 45 50 55 60 70 80 90 100 110 120 130 140 150 160                      
170 180 190] Hz) qualitatively followed the same trend as when we focused on high gamma,                
albeit with slightly poorer decoding performance overall than when focusing on 80120 Hz             
(Supplementary   Table   8).  
 
All analyses presented in the main text follow this pattern when conducted on the full 30190 Hz                 
spectrum: qualitatively similar but quantitatively weaker results than when focusing on 80120            
Hz. This finding also confirms previous reports of the relevance of highgamma power to the               
computations   and   representations   underlying   perception   and   perceptual   processes. 
 
We also considered including lower frequency phase values as Features in the decoding analysis,              
as alpha phase has been linked to perception in concert with highgamma and has been suggested                
to coordinate highgamma activity (e.g., 44,45 ). However, unfortunately because lowfrequency         
phase analyses were not planned ahead of time, we did not use an LED to precisely monitor the                  
timing of the actual stimulus onset. Instead, visual stimulus “onset” was monitored from the              
computer output, meaning a delay between the stimulus presentation trigger and actual stimulus             
presentation was possible. We expect that this was on the order of milliseconds and relatively               
constant across trials, and therefore should not affect the interpretation of our findings regarding              
contributions of highgamma power in 200ms time bins or smoothed with a 50ms time window,               
as we present here. However, because phase information cannot be temporally smoothed, the             
lack of precise stimulus onset monitoring via LED could pose a problem to phase analyses. We                
therefore   elected   to   conduct   this   kind   of   analysis   in   future   studies.   
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Supplementary   Figures 
 

 
Supplementary Figure 1. Timefrequency spectrograms of electrocorticography data, timelocked         
to stimulus onset. (a) Normalized average spectrogram across trials and electrodes. (b)            
Representative electrode spectrograms in response to ‘face’ versus ‘house’ stimulus          
presentations. Power is most salient in highgamma frequency bands (80120 Hz) around            
250400ms after stimulus onset. Note that face and houseselective electrodes may not match             
known functional or anatomical maps. This depiction is for illustrative purposes only; see main              
text for more comprehensive discussion of electrode contribution to Decision versus Confidence            
decoding. 
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Supplementary Figure 2. Twodimensional signal detection theoretic and Bayesian ideal observer           
model space. The abscissa represents Face Evidence and the ordinate represents House Evidence.             
Concentric circles represent isometric bivariate Gaussian distributions viewed from above. A           
diagonal decision criterion (black line) divides the space, such that an internal decision variable  x               
for which Face Evidence is higher than House Evidence (below the diagonal) will be categorized               
as a ‘face’ by the observer. Confidence criteria are shown in red. Note that criteria are shown for                  
the signal detection theoretic formulations of the models, but represent the shape of the decision               
and confidence contours for the Bayesian observer models as well. (a) According to normative              
models, Confidence should be rated on the same internal information as the Decision. The farther               
x is from the Decision criterion, the more likely the observer is to have made a correct Decision,                  
and so the more confident the observer should be. This leads to diagonal Confidence criteria, or                
Confidence being rated on the Balance of Evidence. (b) In contrast, the DecisionCongruent             
Evidence Bayesian heuristic model judges Confidence according to the magnitude of           
DecisionCongruent Evidence, such that the relevant comparison is now whether the evidence on             
the current trial better reflects noise or some prototypical example of the chosen stimulus              
category.   See   text   for   details. 
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Supplementary   Figure   3.      Supplementary   behavioral   results:   Face   and   House   response 
percentages   as   a   function   of   high   versus   low   confidence.   A   2x2   repeated   measures   ANOVA 
revealed   no   main   effect   of   Confidence   (F(1,5)   <   .001,   p   =   1),   no   main   effect   of   Face   vs.   House 
Decision   (F(1,5)   =   2.528,   p   =   .173),   and   no   interaction   between   Confidence   and   Face   vs.   House 
Decision   (F(1,5)   =   1.885,   p   =   .228). 
 
 
 
 

 
Supplementary   Figure   4.      Motor   preparation   cannot   explain   decoding   results.      Electrodes   near 
motor   cortex   carry   information   about   motor   preparation   only   in   responselocked   analyses   (b),   not 
in   stimuluslocked   analyses   (a),   and   only   in   time   periods   directly   leading   up   to   motor   execution. 
This   result   shows   that   motor   preparation   or   execution   should   not   drive   the   decoding   results 
presented   in   the   main   text. 
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Supplementary   Figure   5.      Mean   high   gamma   power   is   not   different   for   high   versus   low 
confidence   responses   when   responselocked. 
 

 
Supplementary   Figure   6.   Axial   view   of   Figure   2b   (main   text).  
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Supplementary Figure 7. Subjectbysubject plots of contribution index  C , as in Figure 2b (main              
text). 
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Supplementary Figure 8. Anatomical distribution of top 25% of overlapping Features between            
Decision and Confidence representations in the same poststimulus time bins. Most of the             
overlap is in occipital regions. Because Confidence is more distributed than Decision, it is clear               
that Confidence calculations rely both on these occipital Features and on other sources of              
information   (e.g.,   frontal   regions;   Figure   2c,   main   text). 
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Supplementary Figure 9. Electrodes significantly responsive to participants’ Decisions may also           
carry some information about DecisionCongruent Evidence for confidence. Rows 14 show           
individual representative ‘faceselective’ and ‘houseselective’ electrodes, and the bottom row          
shows the average response for all electrodes demonstrating significant selectivity according to            
participants’ Decisions. In electrodes significantly tuned to Decisions, mean log highgamma           
power between high versus low confidence trials differs only when the participant’s Decision is              
congruent with the electrode’s tuning preference. For example, ‘faceselective’ electrodes show           
differences in highgamma power primarily when the participant makes a ‘face’ Decision, and             
not nearly as much when the participant makes a ‘house’ decision. The opposite is true for                
‘houseselective’ electrodes. This response pattern is consistent with the DecisionCongruent          
Evidence rule for computing perceptual confidence. Shaded regions (bottom row only) indicate            
the   standard   error   of   the   mean. 
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Supplementary Figure 10. Subjectbysubject plots showing choice probability ROC analyses.          
choice probability (CP) for Balance is always much higher than for the DecisionCongruent             
Evidence   rule   for   Decision,   but   the   two   are   statistically   indistinguishable   for   Confidence. 
 
 
 

 
Supplementary Figure 11. Results of the choice probability confirmatory analysis demonstrate           
that choice probability results are robust to the particularities of the definition of Evidence              
presented   in   the   main   text. 
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Supplementary Figure 12. Results of temporal generalization analysis to examine potential lag in             
predicting from Decision to Confidence. The Stimulus and Decision estimators trained at any             
timepoint poorly predicted Confidence at all timepoints, indicating that the poor performance of             
the forward model is not due to temporal dissociations in processing, but must be due to actual                 
differences   in   representations   and   computations. 
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Supplementary Figure 13. The DecisionCongruent Evidence Bayesian heuristic observer         
predicted subjects’ Confidence responses better than the Bayesian ideal observer across noise            
levels. (a) Histogram of difference in CP for each rule across all noise levels,              
DecisionCongruentOnly minus BalanceOfEvidence. The Decisioncongruent model on       
average outperforms the Balance model. (b) The difference in CPs changes as a function of the                
internal (neuronal) noise assumed in the observer. Across noise levels except for no noise, CP for                
the DecisionCongruent model matches or exceeds CP for the Balance model. Error bars indicate              
the   standard   error   of   the   mean   across   subjects. 
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Supplementary   Tables 
 

Patient Hand VCI POI WMI PSI Language 

1 R 82 97 91 88 English 

2 R     Spanish 

3 R 134 84 102 86 English 

4 R     Farsi 

5 R 95 109 108 124 English 

6 R     Mandarin 

Supplementary Table 1. Patients’ handedness, spoken language, and WAIS results. Prior to            
completing the experimental task, subjects with English as a first language were evaluated on the               
Weschler Adult Intelligence Scale (WAIS): Verbal Comprehension Index (VCI), Perceptual          
Organization   Index   (POI)   Working   Memory   Index   (WMI),   and   Processing   Speed   Index   (PSI). 
 
 

 Frontal Parietal Temporal Occipital 

Patient Hemisphere # % # % # % # % 

1 Left 26 28.6% 17 18.7% 40 44.0% 8 8.8% 

2 Right 75 54.0% 34 24.5% 25 18.0% 5 3.6% 

3 Right 33 22.3% 49 33.1% 49 33.1% 17 11.5% 

4 Bilateral 48 32.2% 36 24.2% 63 42.3% 2 1.3% 

5 Bilateral 67 39.0% 37 21.5% 59 34.3% 9 5.2% 

6 Bilateral 70 40.0% 41 23.4% 54 30.9% 10 5.7% 

Average 53.2 36.0% 35.7 24.2% 48.3 33.6% 8.5 6.0% 

Supplementary   Table   2.   Electrode   distribution   by   subject   and   cortical   lobe. 
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 Decision Confidence 

Time   window 
beginning   at 

(ms) 

AUC %   significant 
subjects  

AUC %   significant 
subjects  

0 0.4945 0% 0.4862 0% 

50 0.5013 0% 0.5168 0% 

100 0.5101 0% 0.5087 0% 

150 0.5238 0% 0.5257 0% 

200 0.5536 16.67% 0.5327 0% 

250 0.6176 50% 0.5595 16.67% 

300 0.6490 83.33% 0.6042 16.67% 

350 0.6757 66.67% 0.6216 16.67% 

400 0.6999 100% 0.6144 16.67% 

450 0.6789 66.67% 0.6612 50% 

500 0.6775 83.33% 0.6239 33.33% 

550 0.6700 83.33% 0.6268 33.33% 

600 0.6797 100% 0.6361 16.67% 

650 0.6721 100% 0.6654 33.33% 

700 0.6726 83.33% 0.6244 33.33% 

750 0.6401 50% 0.6574 33.33% 

800 0.6157 50% 0.6452 33.33% 

850 0.6053 16.67% 0.6138 33.33% 

900 0.5885 33.33% 0.5999 0% 

950 0.5963 0% 0.6182 0% 

Supplementary Table 3. Results of SVM decoding in 50ms timebins as average AUC in each bin                
and percentage of subjects reaching significance in each bin. This analysis confirms that             
Decision   reached   significant   decodability   earlier,   and   for   more   subjects,   than   Confidence.  
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 Factor F(df) p 
Decision Time   bin F(4,3480)   =   41.272 <   .001* 

Time   bin   x   Lobe F(4,3480)   =   7.843 <   .001* 
Lobe F(3,870)   =   7.748 <   .001* 

Confidence Time   bin F(4,3480)   =   18.728 <   .001* 
Time   bin   x   Lobe F(4,3480)   =   2.475 .003* 
Lobe F(3,870)   =   1.896 .129 

Supplementary Table 4. Results of stepdown mixed design ANOVAs within each predictor to             
test for neuroanatomical distribution of Decision versus Confidence representations. All effects           
are significant, with the exception of the main effect of lobe for Confidence; this indicates that                
the neuroanatomical localization of the representation for Decision is specific to certain            
neocortical   lobes,   but   the   distribution   of   Confidence   is   highly   distributed. 
 
 
 Factor F(df) p 
0200ms Predictor F(1,870)   =   .556 .456 

Predictor   x   Lobe  F(3,870)   =   1.528 .206 
Lobe F(3,870)   =   .419 .740 

200400ms Predictor F(1,870)   =   3.358 .067 
Predictor   x   Lobe  F(3,870)   =   8.864 <   .001* 
Lobe F(3,870)   =   17.010 <   .001* 

400600ms Predictor F(1,870)   =   15.826 <   .001* 
Predictor   x   Lobe  F(3,870)   =   1.682 .169 
Lobe F(3,870)   =   4.640 .003* 

600800ms Predictor F(1,870)   =   2.871 .091 
Predictor   x   Lobe  F(3,870)   =   5.165 .002* 
Lobe F(3,870)   =   2.000 .113 

8001000ms Predictor F(1,870)   =   21.880 <   .001* 
Predictor   x   Lobe  F(3,870)   =   2.389 .067 
Lobe F(3,870)   =   3.150 .024 

Supplementary Table 5. Results of stepdown mixed design ANOVAs within each poststimulus            
time bin, again to check for differences between predictors. No differences are apparent in the               
0200ms time bin, consistent with decoding results. However, beginning in the 200400ms bin, a              
significant main effect of lobe and an interaction between lobe and predictor appear, with a               
trending main effect of predictor. This pattern is relatively consistent through the remaining three              
time   bins. 
 
 
 
 
 

 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-017-0139 | www.nature.com/nathumbehav 27

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-017-0139


 
  Mean   (±   SD) t(5) p 
Decision Balance 0.8940   ±   0.050 43.630 <   .001 

DecisionCongruent 0.6560   ±   0.066 24.058 <   .001 
Confidence Balance 0.7085   ±   0.175 9.922 <   .001 

DecisionCongruent 0.6721   ±   0.137 11.987 <   .001 
Supplementary Table 6. Planned  posthoc ttests for Choice Probabilities (CPs) to test whether             
they are significantly above chance (CP = 0.5). All results surpass the criterion for significance               
even   after   BonferroniHolm   correction   for   multiple   comparisons 46 . 
 
 

 F p 

Rule:   Balance   or   DecisionCongruent F(1,5)   =   1.952 .221 

Noise F(10,50)   =   11.613 <   .001 

Interaction:   Rule   x   noise F(10,50)   =   3.399 .002 

Supplementary Table 7. Results of 2 x 11 repeated measures ANOVA testing the predictive              
power of two generative models of Confidence: Bayesian ideal observer (BalanceOfEvidence)           
and   DecisionCongruent   Evidence   Bayesian   heuristic   observer. 
 
 

 P    (80120   Hz) P    (30190   Hz) P    (80120   Hz)   /    P    (30190   Hz) 

Decision 1.2333   ±   0.0634 1.2168   ±   0.0610 1.0135 

Confidence 1.1942   ±   0.1296 1.1850   ±   0.1255 1.0078 

Supplementary Table 8. Predictive power comparisons between highgamma and all          
gammahighgamma   frequencies. 
 
  

 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE HUMAN BEHAVIOUR | DOI: 10.1038/s41562-017-0139 | www.nature.com/nathumbehav 28

SUPPLEMENTARY INFORMATION

http://dx.doi.org/10.1038/s41562-017-0139


Supplementary   Notes 
 
One potential concern in the analyses presented here relates to the limited spatial resolution of               
ECoG in clinical patients: electrodes are implanted in heterogeneous locations of clinical            
relevance, so spatial coverage is both relatively sparse and varied across subjects in comparison              
to wholebrain imaging methods. Indeed, a common approach is to specifically investigate            
regions of interest known to be involved in a particular computation, for example posterior              
parietal cortex for dotmotion discrimination perceptual decisions. Likewise, areas presumed to           
be involved in confidence computations (e.g., pulvinar, orbitofrontal cortex, intraparietal sulcus,           
etc.) are often targeted in wholebrain analyses. Unfortunately, the use of ECoG in human              
patients undergoing surgery for reasons unrelated to the present research precludes specific            
targeting of these regions of interest in the present investigation, as few or no electrodes reached                
these   areas   of   interest.  
 
However, concluding that Decisions and Confidence judgments rely on spatiotemporally          
dissociable computations requires only that we demonstrate any difference, not that we are             
committed to claiming this difference is ubiquitous across all brain areas. Although there are              
shared Features between Decision to Confidence representations (clustered primarily in occipital           
regions), the degree of Feature overlap is small. In this way, ECoG not only provides evidence                
that Decision and Confidence are dissociable, but also provides key information about the             
neuroanatomical loci of their similarities and differences. That we have quantified and localized             
these dissociations suggests that the difference between Type 1 (Decision) and Type 2             
(Confidence)   judgments   is   robust   despite   the   limitations   of   ECoG   spatial   coverage.  
 
Indeed, the results of all analyses demonstrate that (a) there is a difference in how Decisions and                 
Confidence are computed from available evidence (e.g. the significant ANOVA interaction in the             
choice probability analyses), (b) with a forward model we can estimate the trialbytrial accuracy              
of a subject’s Decisions and Accuracy but not his/her Confidence judgments (suggesting that             
Confidence relies on something different from simply a readout of trialbytrial Accuracy), and             
(c) the DecisionCongruent model fits subjects’ data  better than the Balance model in the              
Bayesian observer analysis. Although the spatial coverage may not allow us to sample every              
neuron, the evidence available indicates that the computations leading to Decisions and            
Confidence judgments are indeed dissimilar in a way that is consistent across three different              
analysis approaches. More studies should be done using neuroimaging methods with more            
comprehensive   spatial   coverage   and   better   resolution   to   confirm   the   results   presented   here. 
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