Supplementary Online Material
Experimental Procedures

Participants
Thirty students from the Columbia University undergraduate population participated in the experiment. Participants gave informed consent and were paid $10 for approximately one hour of participation. The research was approved by the Columbia University’s Committee for the Protection of Human Subjects.
Materials and Procedure 
Subjects were seated in a dimmed room 60 cm away from a computer monitor. Stimuli were generated using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB (MathWorks, Natick, MA) and were shown on an iMac monitor (LCD, 24 inches monitor size, 1920x 1200 pixel resolution, 60 Hz refresh rate).

On every trial, two stimuli were presented simultaneously, one 4° to the left of fixation and one 4° to the right. Stimuli were presented on a gray background for 33 ms. Each stimulus was a circle (3° diameter) consisting of randomly generated visual noise. The target stimulus contained a randomly oriented sinusoidal grating (2 cycles per degree) embedded in the visual noise. Both stimuli were set to an overall Michelson contrast of 90%. Targets appeared on the left and right sides of the screen with equal probability. After stimulus presentation, subjects provided a forced-choice judgment of whether the left or the right stimulus contained a grating. Following stimulus classification, subjects rated their confidence in the accuracy of their response on a scale of 1 through 4. Subjects were encouraged to use the entire confidence scale. If the confidence rating was not registered within 5 seconds of stimulus offset, the next trial commenced automatically (such trials were omitted from the analysis). There was a 1 second interval between the entry of confidence rating and the presentation of the next stimulus. Subjects were instructed to maintain fixation on a small crosshair (.35° wide) displayed in the center of the screen for the duration of each trial.

At the start of the experiment, subjects completed 2 practice blocks (28 trials each) and 1 calibration block (120 trials). In the calibration block, the prominence of the grating relative to the visual noise in the target was adjusted continuously between trials using the QUEST threshold estimation procedure (Watson & Pelli, 1983), with the target level of performance set at 75% correct. Three independent threshold estimates were acquired, with 40 randomly ordered trials contributing to each, and the median estimate of these was used in the main experiment. The main experiment (1000 trials) consisted of 10 blocks of 100 trials each, with a self-terminated rest period of up to a minute between blocks.

Three subjects were omitted from data analysis. One exhibited perfect task performance. The other two used an extreme confidence rating (lowest / highest rating) more than 95% of the time, an extreme bias in reporting confidence that renders meaningful analysis of type 2 data difficult.
Methods for Estimating meta-d’


  
The following methods are applicable to experiments in which
1) an observer is repeatedly presented with stimuli which belong to one of two stimulus classes, S1 or S2;

2) following each stimulus presentation, the observer

    a) makes a type 1 decision about whether the stimulus on this trial was S1 or S2;

    b) makes a type 2 decision about whether his type 1 decision was correct or incorrect.
In the following we discuss the simplest case where the observer makes a binary type 2 decision, i.e. endorses each type 1 decision with either high or low confidence. But the analysis is readily extended to apply to an arbitrarily large type 2 rating scale.

Model
    We start with the standard signal detection theory (SDT) model (Fig 1A). According to this model, the way in which the observer performs the type 1 task (i.e. his d’ and c1 values) determines how well he can perform the type 2 task (i.e. the area under his type 2 ROC curve) (Galvin et al., 2003; Fig 1B). Thus, our strategy is to invert this relationship and characterize observed type 2 data in terms of the type 1 model parameters that most closely correspond to it, according to standard SDT. To emphasize the nature of this inversion, we use the prefix “meta-” to denote that the parameters involved, although expressed at the level of type 1 SDT, in fact are used to characterize type 2 data rather than type 1 data.

    The model has the following parameters:

meta-d’ : the distance between the type 1 distributions for S1 and S2, in standard deviation units
meta-c1 : the criterion for making the type 1 decision. Evidence greater than meta-c1 is labeled “S2,” otherwise it is labeled “S1”
meta-c2|r="S1" : the criterion for making the type 2 decision for “S1” responses. Evidence lower than this criterion is labeled “high confidence,” otherwise it is labeled “low confidence.”

meta-c2|r="S2" : the criterion for making the type 2 decision for “S2” responses. Evidence greater than this criterion is labeled “high confidence,” otherwise it is labeled “low confidence.”

    This approach can be readily extended to data with rating scales having more than two levels of confidence by introducing additional type 2 criteria for “S1” and “S2” responses for each additional level of confidence.
    Note that on the standard SDT model, type 2 performance depends on both d’ and c1. Thus, for ease of interpretation, we set meta-c1 to a constant value equivalent to the value of c1 observed in the empirical data, while allowing meta-d’ and the meta-c2 criteria to vary freely. We find the values for these freely varying parameters that, in conjunction with the constant meta-c1, produces a type 1 model that most closely approximates the observed type 2 data. Thus, in effect, meta-d’ answers the question, “what d’ would a metacognitively optimal observer with the same type 1 response bias as the experimental subject require in order to reproduce that subject’s type 2 data?”

    There are a number of ways to characterize the type 1 criterion (Macmillan & Creelman, 2005). The measure for type 1 criterion that one chooses makes a difference for estimation of meta-d’, because we hold the type 1 criterion constant while allowing meta-d’ to vary. Different measures of type 1 criterion encapsulate different notions of what it means for the criterion to remain constant while (meta-)d’ varies, which in turn has differential consequences for how the criterion and (meta-)d’ combine to determine expected type 2 data. We favor using the relative criterion c' = c / d’ (Macmillan & Creelman, 2005), since holding this measure constant ensures a comparable degree of type 1 response bias across all levels of d’. Other popular measures for response bias include the likelihood ratio β and the type 1 criterion c. However, provided there is some response bias (i.e. c ≠ 0, β  ≠ 1), holding these criterion measures constant implies a monotonic decrease in biased responding (i.e. a decrease in the deviation from responding "S1" and "S2" with equal frequency) as d’ increases. Thus, for the purpose of this analysis, there is a sense in which holding β and c constant while varying d’ confounds variation in d’ with response bias. 

    Another complication comes from the standard deviations of the evidence distributions conditional on stimulus classes S1 and S2. In this analysis we assume that these standard deviations are equal. The equal-variance SDT model describes many kinds of two-stimulus classification tasks well, particularly 2-interval forced choice tasks (2IFC or alternatively 2AFC; see Macmillan and Creelman, 2005). However, for some kinds of paradigms such as perceptual detection tasks or old-new memory tasks, the data may be better described by a SDT model where the variances of the stimulus distributions are unequal. The ratio of these standard deviations, called s, can be estimated by varying the type 1 criterion in order to collect many (type 1 FAR, type 1 HR) data points (for a fuller discussion of this estimation method, see Macmillan and Creelman, 2005). In practice, the type 1 criterion may be varied by changing response incentives or base rates of stimulus presentation across experimental conditions. However, an easier and more typical design is to ask the observer to use a rating scale on each trial, typically by providing a stimulus classification and confidence rating. Such a rating scale with N possible responses requires the observer to partition the decision axis into N regions by using N-1 response criteria, i.e. a type 1 criterion for stimulus classification and N-2 type 2 criteria for confidence rating. Each of these N-1 response criteria can then be treated as if they were different values the observer could have utilized in order to make a binary type 1 stimulus classification. These pseudo-type 1 criteria can then be used in order to estimate s. However, note that this approach tacitly assumes that type 2 responses conform to the expectation of the standard SDT model; that is, this approach assumes that meta-d’ = d’ – which renders the problem somewhat circular because if meta-d’ is known to be the same as d’, there would have been no need to estimate meta-d’ using this method. 

    One empirical way around this problem is to estimate s using explicit experimental manipulations of the type 1 criterion, rather than using confidence data to generate a set of pseudo-type 1 criteria. In this case, the estimate of s does not depend on the value of meta-d’. The model for fitting meta-d’ can be adjusted by adding in a parameter meta-s, held constant to the empirically determined value of s, thus making it an unequal variance SDT model. Maximum likelihood estimation of the type 2 data can be conducted on this unequal variance SDT model as usual. Because d’ assumes an equal variance SDT model, it is not ideal for characterizing type 1 sensitivity in the unequal variance model, and measures such as da are to be preferred (Macmillan and Creelman, 2005). Likewise, if using an unequal variance model, the analogous adjustment yielding meta-da is appropriate.
    We leave it to future work to explore how this somewhat flawed estimation of s may subsequently affect estimation of meta-d’. Barring an empirical work-around to the problem such as the one described above, we recommend limiting meta-d’ analysis to cases where the estimation of s is less critical, e.g. in 2AFC designs. 

Model fitting by maximum likelihood estimation

    Let us refer to the parameters of the model listed above collectively as θ. Once we have specified the value of θ, we can derive the probability with which the model generates each level of confidence, contingent upon each possible combination of stimulus class and type 1 response. For instance,

p(high confidence | stimulus = S2 and response = “S2”)

= p(high confidence | correct “S2” response) 

= p(high confidence “S2” response | S2) / p(“S2” response | S2)

= p(x > meta-c2|r="S2" | S2) / p(x > meta-c1 | S2)

= [1 – normcdf(meta-c2|r="S2" , meta-d’ / 2) ] / [1 – normcdf(meta-c1 , meta-d’ / 2) ]
where normcdf(c, µ) denotes the cumulative distribution function for the normal distribution with mean µ evaluated at c. These probabilities of providing confidence ratings contingent upon stimulus class and type 1 response are the type 2 data of interest.

    Following past methods for performing maximum likelihood estimation of SDT models (Dorfman & Alf, 1969), assuming that responses on each trial are independent allows us to quantify the likelihood of a given type 2 data set under a given type 1 SDT model θ by using the multinomial model:
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where c, s, and r denote the possible values of confidence rating, stimulus class, and type 1 response, respectively. Probθ is the probability of confidence rating c being given for stimulus s and response r, according to the SDT model with parameter values θ. ndata is a count of the number of such times confidence rating c was observed in conjunction with stimulus s and response r in the data.
    Maximum likelihood estimation finds the set of parameter values θ* that makes the observed type 2 data most likely to have occurred. In other words, it finds the value for θ that maximizes L(θ | data). (In practice, it is computationally simpler to maximize log likelihood since taking the log converts exponents into multipliers and multiplications into sums.) We have not been able to find an analytical method for performing this maximization, but it can be achieved using numerical estimation methods. See http://www.columbia.edu/~bsm2105/type2sdt/ for Matlab code that accomplishes this maximization.
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